
Copyright 2005-2006 Gilad Bracha

Objects as Software
Services

Gilad Bracha

Copyright 2005-2006 Gilad Bracha

Bit Rot

Bits don’t rot

It would be better if they did

Dynamically typed languages can help
us rot them

Copyright 2005-2006 Gilad Bracha

Software requires
Maintenance

We expect software updates with

bug fixes

new features

Dynamic update is standard practice
for, e.g., OS vendors

Copyright 2005-2006 Gilad Bracha

First, Pester

Copyright 2005-2006 Gilad Bracha

Then, ask for ID

Copyright 2005-2006 Gilad Bracha

Then, legalese

Copyright 2005-2006 Gilad Bracha

Then, the coup de grace

Copyright 2005-2006 Gilad Bracha

But wait, there’s more

Copyright 2005-2006 Gilad Bracha

Expect better

Make maintenance as transparent as
possible

No questions, hassles

Nothing should ever boot or reboot

Always up to date

Like a web app/service

Copyright 2005-2006 Gilad Bracha

Web Apps have
downsides

System software has to be local

UI issues

Depend on network being:

Reliable

Fast

Cheap

Still make you “reboot” - it’s called:
session expired

Copyright 2005-2006 Gilad Bracha

Software Services

Combine advantages of web services
and traditional client applications

Always Available (even w/o network)

Always Up to date

Run locally, think globally

Copyright 2005-2006 Gilad Bracha

Dynamically Typed
Languages to the Rescue

Lots of experience with updating code
on the fly

Much easier to do in the absence of
mandatory static type system

Copyright 2005-2006 Gilad Bracha

Self Modifying Code
Makes people nervous

Lots of issues:

What happens if the modified code is still
active (on the stack)

What happens to instances of modified
classes

schema changes, representation invariants

Security

Copyright 2005-2006 Gilad Bracha

Self Modifying Code

Needs structure

Mirror based Reflection

Much easier if program is quiescent

This does not mean waiting until the program
restarts.

Copyright 2005-2006 Gilad Bracha

When is the Program
Quiescent?

Many applications perform data
synchronization over the network

Synchronizing with server

Provides reliable backup, audit trail

Allows access from multiple devices

Supports collaboration

Copyright 2005-2006 Gilad Bracha

Synchronization

 Natural point for program update
 Applications are quiescent
 Transition is user-visible

 Program as Data
 Sync program as well as data

Copyright 2005-2006 Gilad Bracha

Orthogonal
Synchronization

All persistent data is sync’ed

Data is persistent if it is reachable from a
persistent root, and not marked transient

Transient data is lazily recomputed after
every sync

This can be enforced with aid of context free
syntax, e.g., transient f [initExpr]

Copyright 2005-2006 Gilad Bracha

Orthogonal
Synchronization

Criticisms of orthogonal persistence do
not apply

Copyright 2005-2006 Gilad Bracha

Orthogonal
Synchronization

Criticisms of orthogonal persistence do
not apply

Data outlives Program:

Copyright 2005-2006 Gilad Bracha

Orthogonal
Synchronization

Criticisms of orthogonal persistence do
not apply

Data outlives Program: Program and data live
as long as the service

Copyright 2005-2006 Gilad Bracha

Orthogonal
Synchronization

Criticisms of orthogonal persistence do
not apply

Data outlives Program: Program and data live
as long as the service

Transient data pollutes database:

Copyright 2005-2006 Gilad Bracha

Orthogonal
Synchronization

Criticisms of orthogonal persistence do
not apply

Data outlives Program: Program and data live
as long as the service

Transient data pollutes database: transient
data is zapped at every sync

Copyright 2005-2006 Gilad Bracha

Orthogonal
Synchronization

Criticisms of orthogonal persistence do
not apply

Data outlives Program: Program and data live
as long as the service

Transient data pollutes database: transient
data is zapped at every sync

No cross-program interchange format:

Copyright 2005-2006 Gilad Bracha

Orthogonal
Synchronization

Criticisms of orthogonal persistence do
not apply

Data outlives Program: Program and data live
as long as the service

Transient data pollutes database: transient
data is zapped at every sync

No cross-program interchange format: XML

Copyright 2005-2006 Gilad Bracha

Orthogonal
Synchronization

Efficient synchronization requires
knowing what has changed

Persistent objects should log changes

A good language will ensure that all access is
mediated by getters/setters

When an object becomes persistent, change
its setters so that they log changes

Copyright 2005-2006 Gilad Bracha

Key Points

Hotswapping

Software Services

Dynamic Typing

Orthogonal Synchronization

Copyright 2005-2006 Gilad Bracha

Security

Hotswapping based upon network
input is scary

Must verify identity of server and clients

Need strong security model for code

Can we achieve this w/o typed assembly
language/wire format?

Copyright 2005-2006 Gilad Bracha

Security

Wire format must be

dynamically type safe

pointer safe

Objects must be strongly encapsulated

Objects will serve as capabilities

Copyright 2005-2006 Gilad Bracha

Security

Mirrors act as capabilities for reflection

Provide single, centralized access to all
reflective operations

Specific subsets available through particular
mirrors

Not something you can get from
traditional reflective API or from
popular scripting languages

Copyright 2005-2006 Gilad Bracha

Security

Strong sandbox - no global/static state
(aka No Ambient Authority)

Copyright 2005-2006 Gilad Bracha

Modules

For Development & Deployment

No static state

Global internet-style namespace for
immutables only

No versions

Copyright 2005-2006 Gilad Bracha

Modules

For Development & Deployment

No static state

Global internet-style namespace for
immutables only

No versions

Copyright 2005-2006 Gilad Bracha

Modules

Self contained parametric namespace

No imports

imports are for localizing couplings, not for
decoupling

All external dependencies are pluggable
parameters

Only parameter declarations see surrounding
namespace

Explicit export of module elements

Copyright 2005-2006 Gilad Bracha

Modules

Are instantiated into stateful objects

Top level module instantiation happens
in namespaces with access to globals

Parameters are objects/capabilities that
determine per-module sandbox

Copyright 2005-2006 Gilad Bracha

Speculative Syntax

main(platform, args) {

letrec

app = new com.foo.bar.demo(sandbox, args);

sandbox = platform.restrictedSandbox();

in app.run();

}

Copyright 2005-2006 Gilad Bracha

Modules

For Development & Deployment

No static state

Global internet-style namespace for
immutables only

No versions

Copyright 2005-2006 Gilad Bracha

No Static

Classes, Modules, Namespaces are
values (and so are numbers, ...)

Good for

Distribution

Security

Startup

Memory management

Copyright 2005-2006 Gilad Bracha

Modules

For Development & Deployment

No static state

Global internet-style namespace for
immutables only

No versions

Copyright 2005-2006 Gilad Bracha

No Versions

Users subscribe to a software service

Bug fixes and updates included in
subscription

Only one current version at any time

No releases!

Copyright 2005-2006 Gilad Bracha

No Releases?!

This is a radical change in the
development model

Relatively easy for applications

Hard for libraries and components

How do we deal with incompatibilities

Copyright 2005-2006 Gilad Bracha

No Releases!
Developers subscribe to pre-release
libraries

Change cycle is very rapid - days/weeks
rather than months/years

Expect libraries to morph on you daily,
and be prepared to adapt

Development model is more like open
source: Bits Rot, deal with it

Copyright 2005-2006 Gilad Bracha

No Releases/Versions

Can this work?

As a producer of incompatible code
you can find out if anyone cares

Do senders-of globally on the entire planet

Refactor callers

If anything breaks worldwide - you’ll know.

Copyright 2005-2006 Gilad Bracha

No Releases/Versions

As a consumer of an incompatible API
you can respond rapidly

Manage transition with conditional code - and
get rid of the mess the next day.

If anything breaks worldwide - you’ll know.

Bugs that aren’t caught in development can
still be fixed almost immediately.

Copyright 2005-2006 Gilad Bracha

Connections
Mirrors

Self

Strongtalk, JDI, APT ... See OOPSLA 04

No static

Scala

Fortress

E

Copyright 2005-2006 Gilad Bracha

Connections
Security

E

Java

Modules

 Jigsaw, 1991

Units

ML

Fortress

Copyright 2005-2006 Gilad Bracha

Connections
Representation independence

Self

Networked Clients

Rich, Thin, Fat, Smart, Managed ...

AJAX

Flash

Avalon, XAML

dotmac

Many others ...

Copyright 2005-2006 Gilad Bracha

Connections

Synchronization and networked stores

SyncML

WebDAV

Copyright 2005-2006 Gilad Bracha

Summary
Object based Encapsulation

Security Hotswapping

Software Services

Version free Software

Dynamic Typing

Copyright 2005-2006 Gilad Bracha

Rotting Bits for a better
World

The indestructability of bits is a hidden
curse

A model which expects incompatibility
as a matter of course is better than
denying change

Dynamically typed, secure, modular
languages can enable such a model

