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Abstract

Software services seek to combine the advantages of traditional client applica-
tions and web services. Software services go beyond web services in supporting
applications that must function when networks are slow, unreliable or nonex-
istent, that have low tolerance for network latency, and/or require excessive
bandwidth. At the same time, software services retain the advantages associ-
ated with web services: they are always available and always up to date. We
discuss the structure of an object based platform for software services and es-
pecially the advantages of object oriented language principles in facilitating the
platform’s design.

1 Introduction

Web services have important advantages compared to traditional software ap-
plications. Briefly summarized, these are:

• They are always available (as long as a reliable network connection ex-
ists). Users can access them from any node on the internet, irrespective
of whether they own the node in question or not, and independent of the
peculiarities of specific platforms and operating systems.

• They are always up to date. Neither the user nor the developer is con-
cerned with downloading and installing software, or with ensuring that
the correct version of it is running.

Web services also have significant drawbacks.

• They require a robust network connection. Otherwise, they cannot be
used.

• It is challenging to program such services in a way that provides good
interactive response.

• They transfer the entire burden of computation on to servers, making poor
use of the computational capacity of devices on the network edge.
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Software services are designed to address the weaknesses of web services
while retaining their primary strengths. In this paper, we sketch an object
based platform for software services. The emphasis in this presentation is on
the leverage our project gains by adhering to specific principles of object oriented
programming language design.

The prominence of web services has already provoked significant efforts in
object oriented language design, in two areas:

• Support for semi-structured datatypes. Web services traffic heavily in
XML, and language support for representing, manipulating and typecheck-
ing XML data has received a great deal of attention [BMS05].

• Support for asynchronous distributed computation [BCF04].

While a language should offer support in these important areas as well, this
paper focuses on issues that arise largely from the needs of software services,
which have not received much discussion in the literature.

Software services must be usable off-line (i.e., in the absence of a working
network connection). This implies that the service must be able to run on a
client device and that the data the service requires should be available on the
client. At the same time, when a network connection is available, data must be
placed on a network accessible server, so that it can be made available to other
clients, reliably backed up etc.

Since multiple clients might edit the data while off line, a reconcliation pro-
cess must ensure that the server retains a correct, up-to-date data represen-
tation. This process is usually known as synchronization and is commonplace
in applications such as personal information managers (PIMs). Usually, this
requires specialized programming on the part of each application. Furthermore,
such data synchronization in no way addresses the management of program
downloads, versioning and updates that web services handle so well.

Our design addresses these two key points with the notions of:

• Orthogonal Synchronizability.

• Programs as Data.

These notions, while based on a long history of computing research, are
undoubtedly controversial. In the next two sections, we discuss them in detail,
and argue why they are appropriate in the context of software services. Then,
we discuss issues of security and concurrency their interaction with language
and platform design. Finally, we present related work and conclude.

2 Orthogonal Synchronizability

Orthogonal synchronizability is a novel contribution of this work. A datum is
synchronizable if it can be reconciled with a corresponding (possibly different
or even empty) datum stored separately (on a server or on a different client
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device). Orthogonal synchronizability means that any datum, regardless of
type, is synchronizable.

In practice, this means that any object in an application can be correctly
synchronized, without special effort on the part of the programmer, This enables
a wide variety of applications to be programmed more naturally and robustly
while still supporting the synchronization features critical to a software service.

Readers will no doubt recognize the similarity to the well known notion of
orthogonal persistence [AM95]. Orthogonal persistence has fallen from favor.
This stems largely from the fact that data created by orthogonal persistence
tends to be in the form dictated by the program. This has some inherent
disadvantages:

1. Data typically outlives the program that created it. Such data is at risk
of becoming inaccessible as the tools that create it become obsolete and
eventually unavailable on current platforms.

2. Programs represent data in ways that are optimized for the program’s
needs. They tend to include transient fields that are not properly part of
the data’s natural representation.

3. Data needs to be shared by multiple programs with different needs. Using
a representation dictated by one program can make such sharing difficult.

We believe that these concerns, while valid in their original context, do not
pose a problem in the new world of software services.

Software services are responsible for both data and applications that manip-
ulate it, by definition. As long as the service exists, a program that understands
how to manipulate it exists as well. Indeed, the data representation and the
applications that manipulate it evolve in tandem. If the service ceases opera-
tion, the data must be extricated at that point in time, regardless of its format.
Thus, item 1 no longer holds.

Transient data is already filtered out of the synchronized representation, as
discussed in subsection 2.3 below, so we need not be concerned over item 2.

Likewise, point 3 is moot. Web services naturally traffic in relatively sta-
ble, standard representations of data (as XML) and therefore such applications
provide ways to exchange their data with other applications.

On the other hand, the benefits associated with orthogonal persistence carry
over to orthogonal synchronizability. Programmers are relieved from a heavy
burden of design and implementation to support synchronization. Even simple,
small programs can act like a service, without the heavy overhead of supporting
a special infrastructure. The resulting system is more robust and performant,
as the specialized effort involved in implementing synchronization is centralized.

Now it is time to show how orthogonal synchronization is implemented in
practice.
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2.1 Synchronization Scheme

Our synchronization scheme is change-based. When synchronization occurs,
the client relays a change log to the server. The server then applies these
changes to the last version known to exist on the client (known as an anchor),
to derive a complete current representation of the client’s state. This version is
then reconciled with the current master version to derive a new master version.
Finally, the set of differences between the newly computed master version and
the version on the device is computed and sent to the client, which applies it
locally.

This scheme contrasts with approaches such as Harmony [PSG04], which
seek to reconcile complete data sets.

The advantage of a change-based scheme (in many ways similar to SyncML)
is that it conserves bandwidth, enabling quick and more frequent syncs. Short
syncs save not only time, but device battery power (in the common case where
the client is a mobile device).

Furthermore, we elect to place most of the burden of reconciliation on the
server. Reconcliation is computationally demanding in both time and space.
Typically, reconciliation requires at least twice the memory footprint of the
data set, as two copies of data need to be stored and compared. The savings in
space, time and, once again, battery power on clients are crucial, especially for
small mobile devices.

All of the above begs a key question: How is the change set derived on the
client?

2.2 Maintaining Change Sets on the Client

Using conventional techniques, maintaining an accurate change log is difficult.
Any data that must be synchronized would need to log changes to itself as
the computation occurs, This would require error-prone manual programming.
Furthermore, the set of data reachable from a persistent (or in our case, syn-
chronizable) root changes dynamically. When do we log these changes, and
when do we not?

Our solution relies on the system’s ability to dynamically modify objects
so that they begin to log changes when they become reachable from the set
of synchronizable roots. To do this, we require that all state be accessed via
accessor methods. The use of accessors is good software engineering practice,
and is easily enforced by the language. In this respect, we follow the lead of Self
[US87].

Our system is capable of dynamically changing these accessor methods to
log (or stop logging) changes. Thus, the ability to modify code on the fly is an
intrinsic requirement in our scheme. Of course, such a capability brings with it
potential security risks. We address these using a mirror based reflective archi-
tecture [BU04] coupled with capability based security, as discussed in section
4.1 below.
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2.3 Handling Transient Data

Transient data is purged automatically upon synchronization. This enforces a
scheme in which applications ensure all accessors for transient data compute
that data lazily if it is nil.

In this scheme, all transient fields are associated with a closure which com-
putes their value. This association is enforced syntactically. Whenever the value
of a transient field is required, the system generated accessor will check if the
field is nil. If so, it will initialize it using its associated closure and return the
computed result. Subsequent requests use the cached value. Niling out the
transient fields therefore force all transient data to be lazily recomputed. Lazy
initialization of all transient values is thus assured, both initially and after every
synchronization. This means that changes to persistent data as a result of a
sync are always reflected in the program’s transient state.

3 Programs as Data

Treating programs as data means that all the benefits of synchronization carry
over directly to programs as well. Just as there is one current version of the data
(with auditable, consistent snapshots representing the past), there is one cur-
rent version of all applications, which is consistent with the data (and likewise,
consistent snapshots of the past).

This economy of mechanism translates directly to a smaller platform, which
has smaller footprint and is easier to maintain.

Nevertheless, some care must be taken for this vision to work.

3.1 Reflection

As noted above, during synchronization, clients send a change set to the server.
The server then updates the master version, computes what changes are needed
to the client, and sends these changes back to the client. The client then applies
these changes to itself.

Since changes may include modifications to the program as well as data, the
client must be able to modify the program. To prevent any disruption of the
user’s work, these modifications must be applied without stopping the running
program.

It follows that reflection, and especially support for self modification (also
known as hotswapping), is crucial so that running applications can be updated
during synchronization.

The ability to modify code on-the-fly is also used to support orthogonal
synchronizability as discussed above.

Modifying a running applications is a delicate operation. While modifying
the code is straightforward, modifying the structure of objects is more complex.
However, these issues have long been addressed in programming environments
such as Smalltalk [GR83], Self [US87], Lisp [KdRB91], Erlang [AVWW96] etc.
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When modifying a running application in a production environment, special
considerations apply. If the code to be modified is active on the call stack,
what should its disposition be? The answer depends on circumstances. In our
case, the system ensures that this circumstance does not arise. All applications
must be quiescent when synchronization is invoked. This fits well with user
expectations, since synchronization provides a natural hiatus in user interaction.

The requirement that applications be quiescent ensures that their call stacks
are empty. A quiescent application is typically waiting for an input event.
As such, it has no active frames on its call stack (except possibly the event
loop itself). It should be clear that there is no need to stop and restart an
application. Following synchronization, all the persistent state being acted upon
by an application is in memory and up to date. Any transient data that the
application requires will be recreated on demand as noted above.

3.1.1 Typing

From a programming language design perspective, the most crucial property
needed to enable reflective update is dynamic or optional typing.

In the presence of mandatory static typing, reflective update requires the run
time system to maintain the invariants of the static type system in the face of
program changes. Naively, this would require retypechecking the entire system,
a costly proposition. This may be optimized using incremental typechecking,
but this remains resource intensive: dependencies must be maintained, and the
amount of code to be revisited may still be large. This explains why systems
that rely on mandatory typing (e.g., Java [GJSB05]) do not support the flexible
reflective features we require. Type safe hotswapping remains, therefore, a topic
for further research [Dug01, SHB+05].

Note that we do not advocate the complete absence of static typecheck-
ing, as in traditional dynamically typed languages. On the contrary, static
typing can have great value in program development. The important thing is
rather that typing is not mandatory, but instead is optional and even pluggable
[Bra03, Bra04]. Pluggable typing also allows for the seamless incorporation of
specialized type systems that support security - for example, information flow
tracking types that ensure that capabilities do not escape their intended scope.

3.2 Modularity

Programs are installed onto various devices, where they interact with facilities
of the host. It is therefore essential that any external dependencies of a program
be clearly distinguished.

A module, therefore, is completely self contained. All external references
are explicitly defined as parameters to the module, and their bindings are de-
termined only when the module is used.

A module is stateless. It may be instantiated to an object, at which time
actual parameters are provided, binding the module to its environment.
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There is therefore no global or static state in our language. The only global
names denote immutable values.

Namespaces map names to immutable values. Namespaces are themselves
immutable, and may therefore nest. There is a global namespace whose struc-
ture is similar to that of Java packages - an inversion of the internet domain
system.

Namespaces may be self contained, so that definitions within them do not
have access to any surrounding namespace. We provide operators, in the style
of Jigsaw [Bra92] that allow a namespace to restrict the names that it exposes
to the outside. A module is then a parametric, self contained namespace with
an explicit list of exposed elements. Only the module parameter declarations
have access to the surrounding namespace, so that they may be annotated with
metadata defined elsewhere - in particular, types. Any access to types within a
module must be be through a parameter name.

Stateless modules provide advantages with respect to:

• Distribution. Modules can easily be shared across processes, both local
and remote.

• Security. Static state provides ambient authority, and as such is a well
known source of security problems.

• Memory management. Modules can be unloaded from memory through
ordinary garbage collection. They do not necessarily need to be stored in
a special memory space, improving memory utilization. All this simplifies
garbage collection. It is interesting to contrast this with the Java platform,
where class unloading is restricted and subtle [GJSB05].

• Startup time. In the absence of static state, programs are much less likely
to indulge in excessive initialization up front, and more likely to build up
state lazily. This allows for faster startup and a better user experience,
which is important in a client system.

• Robustness. Since classes need not be initialized, class initialization can-
not deadlock, unlike mainstream programming languages [GJSB05].

Our model fits well with security needs. Each module instance has its own
sandbox, tailored to its requirements based on the principle of least authority
(POLA). This provides both tighter control and greatly increased flexibility
compared to a traditional sandbox model.

When a module is instantiated on a host, the objects provided as parameters
define the sandbox for that module. These objects are capabilities, as described
below.

4 Capability based Security

Work on mobile code security is focused on protecting the host computer from
mobile code. The flip side of this concern is protecting the code from unau-
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thorized access by the host. That is the domain of licensing and digital rights
management. Capabilities work well for both concerns. Again, this conceptual
parsimony yields reduced software size, complexity and cost throughout the
software lifecycle.

4.1 Mirrors as Reflective Capabilities

The capability to perform reflection subsumes any other capability in the sys-
tem, as it enables arbitrary data access and program change. Therefore, it is
crucial that this capability be managed very carefully. In most reflective APIs,
access to reflective functionality is diffuse throughout the system.

In contrast, a mirror-based reflective architecture [BU04] provides a single
access point for all reflective facilities. In our design, this is manifested as a
singleton instance of the Mirror module. This instance is the factory for all
mirrors in the system. As such, it is the sole capability for reflective access.
More restricted capabilities may be provided by the mirrors it produces, or by
wrapper objects that restrict its functionality.

4.2 Subscription based Licensing

The model described here naturally enables subscription based services. Any
software module can be disabled when/if its license expires, and arbitrary li-
censing schemes can be implemented - e.g., an object that only plays a given
piece of music once, or five times, or until a given date. Of course, the ability
to disable a given module is itself a capability that must be managed carefully.

Subscription based licensing is a form of digital rights management. The
challenges in this situation are different from those that arise in securing the
platform from mobile code. Here, the owner of the host machine is a potential
adversary, and this owner has a great deal more power at his/her disposal than
incoming mobile code has.

In principle, the platform can be reverse engineered, subverting any licensing
scheme it implements, This is, however, true of any software DRM scheme. In
practice, if there are reasonable incentives to use the system legally and the
system is well designed, this is not a large problem.

There are nevertheless issues to consider. DRM schemes are best protected if
they are directly supported by the OS. Running a platform directly on the hard-
ware, as its own OS, is attractive. If this is not feasible, cooperation/support
from the OS is helpful. A third possibility arises when the host platform is itself
managed, e.g., a mobile phone, where the telco controls all downloads to the
device.

In many situations, none of the above options is available. In this case, one
must be very careful in controlling access to native code. Access to native code
is the ultimate capability. Unrestricted calls into native code afford that code
the opportunity to undermine any guarantees the platform can make. It may
be necessary to ensure that access is only granted to specific, well known native
libraries (through platform primitives) and/or across process boundaries (see
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section 5). Even in the case of RPC, one must be very careful what structures
are passed across the process boundary, so no critical data, such as cryptographic
keys, is inadvertently exposed.

5 Actor-style Concurrency

Web services are distributed processes that communicate asynchronously. The
software service platform’s notion of concurrency is likewise based on isolated
processes known as actors, that communicate by asynchronous message passing.
Only immutable data is shared among actors.

The concept of immutable data is general use in a programming language,
and helps to efficiently model mathematical values such as numbers and booleans
as objects. As we have seen above, it also applies to program constructs such
as namespaces, modules and classes. This very same construct also facilitates
communication among actors.

The actor model fits well with the GUI/Logic/Database model used in web
applications today. It naturally encourages this structure in applications regard-
less of whether they are actually distributed in this way or not. At the same
time, it avoids the forced coding of each component in a different language.

As a result, programmers need not worry about how to split their application
between client and server. This concern is one of the fundamental architectural
difficulties with current approaches to web programming such as AJAX. Actors
can be migrated transparently from client to server or vice versa. Code that
cannot run on the server today for whatever reason (network performance, server
resources) can be moved to the server as conditions change. The migration can
even be done dynamically.

Actors don’t know if their peers are running on the same VM, the same
machine or even if they are actual actors or just proxies for processes written
in other languages on other platforms. For example, a C or Java process can
communicate with an actor via the system’s asynchronous message passing pro-
tocol. The external process appears to be just another actor - regardless of
whether it a web service on a remote device or a local process written in some
other language.

Just as a web service can masquerade as an actor, it is easy to adapt an
actor to be a web service in this model. A standard mapping from asynchronous
method invocations to an HTTP or SOAP protocol can be implemented by an
adaptor process which can be generated reflectively on the fly.

As alluded to in section 4.2 above, the actor model provides a way to com-
municate with native code without the security risks that usually entails. Recall
that in Java, any security guarantees made by the JVM may be voided by mis-
behaving native code. Such code might have buffer overflows that corrupt the
VMs memory; malicious native code might snoop on VM memory and defeat
encapsulation and privacy policies supported by the platform. If native calls
are restricted to interprocess communication, these risks are greatly reduced.
Of course, there is a significant performance penalty for such an arrangement.
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The actor model also has significant advantages for programmers. Concur-
rency is easier to reason about in this model, because there is no shared state.

6 Advantages of Software Service Vendors

A significant advantage of web services is that their disposition can be constantly
monitored by the service provider. When a web service fails, the service provider
knows that it has failed. If the service provider and the software vendor are one
and the same, or in close contact, the vendor can attempt to diagnose the
problem. The service provider also knows what configuration of software is in
use; again, as long as there is a close connection between provider and vendor,
there is no concern for unforseen configurations that might be deployed in the
field.

Software services can ensure that the developers of software always enjoy
these advantages. Every time a program fails, the system can log data about
the failure and ensure that it is reported. Once a reliable fix is available, it is
deployed automatically to all users.

However, software services can go beyond web services to support robust
software evolution. The service model works well for applications. However, in
the case of software libraries, versionless evolution is harder. Subtle incompat-
ibilities may break client code. The traditional solution is to allow clients to
retain old versions of libraries for as long as is convenient.

Of course, one can simply rename classes when an incompatible change is
found, and keep both versions available. This again has implications for lan-
guage design. Mandatory type systems may inhibit such scenarios.

However, the goal has been to eliminate software versions altogether. The
world of software services brings a new mindset in terms of software maintenance
and testing.

Since every use of the software is known and recorded on the service’s servers,
library vendors can release updates at a very high frequency and the release cycle
is effectively shortened from years to weeks or days. Clients would get early
versions and test them (in fact, the service could run tests suites automatically)
and make adjustments (or demand adjustments from library vendors) on the
same rapid time scale.

Every configuration is known. Vendors can know with certainty who is using
a deprecated method or class. They can contact these people, or even provide
automatic updates that replace one usage with an equivalent, more up to date
one.

7 Related Work

Efforts to combine some of the advantages of web services and of traditional
applications have been concentrated in the commercial world. These include
systems such as DreamFactory, Flash based systems like Laszlo [Las], Macro-
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media Flex & Central , and Water [Plu03]. Most of these systems are focused
on providing a rich client UI experience while supporting network aware appli-
cations. Only Central provides a deployment model, and none have provided
a mechanism for updating programs on the fly. Hence, the fundamental move
toward truly versionless applications is not addressed by these systems. Security
is also typically lacking.

The E programming language [Sti00] focuses on issues of security and dis-
tribution, and its designers have made similar decisions. Like our work, it is
heavily influenced by the legacy of Smalltalk-80 [GR83]. However, in the in-
terest of security, E completely eschews reflection, which we have shown to be
crucial to our purposes. E also does not deal with the notion of software services
in any particular way.

One of the commonalities between our system and E is the absence of
static state. Fortress [ACL+05] also restricts static state, and has a compo-
nent/module model that is not dissimilar to our proposal. Recent versions of
Scala [Ode01, OZ05] also ban static state.

There is a vast literature on modularity, and we cannot begin to survey
it here. Notably relevant is the work on Units [FF98a, FF98b]. ML modules
[Mac84, MTH90] are similarly parametric, but differ in crucial respects - they
are not first class values and they do not support mutual recursion.

Harmony [PSG04] is a system for synchronization that is not based on change
sets, but allows for synchronization of heterogenous data sources.

There are numerous commercial standards that deal with some of the issues
we discuss. SyncML gives a model of changed based synchronization that is
similar to ours, It does not however provide for orthogonal synchronizability,
or deal with the synchronization of programs. It is, however, programming
language independent. WebDAV is a standard for file systems access over the
internet.

8 Conclusions

We have outlined a platform for software services that combines advantages of
web services and traditional client applications.

Contributions of this paper include

• The novel concept of orthogonal synchronizability. While building upon
established notions of orthogonal persistence, it is better suited to practi-
cal application, taking advantage of the special circumstances of software
services.

• The reification of programs as stateless data in an object oriented lan-
guage, and the direct application of this idea to version-free application
deployment.

• The notion of a general purpose language (and underlying VM) that di-
rectly support capabilities.
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