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Abstract

We �unbundle� several roles of classes in existing languages� by providing a suite of
operators independently controlling such e	ects as combination� modi
cation� encapsulation�
name resolution� and sharing� all on the single notion of module�

All module operators are forms of inheritance� Thus� inheritance not only is not in
con�ict with modularity in our system� but is its foundation�

This allows a previously unobtainable spectrum of features to be combined in a cohesive
manner� including multiple inheritance� mixins� encapsulation and strong typing�

We demonstrate our approach in a language called Jigsaw� as in the tool� not the puzzle���
Our language is modular in two senses� it manipulates modules� and it is highly modular in
its own conception� permitting various module combinators to be included� omitted� or newly
constructed in various realizations� We discuss two pragmatic avenues for the exploitation
of this approach�

�� Adding modules to languages without modularity constructs�

�� Embedding selected new modularity capabilities within existing object�oriented lan�
guages which we are undertaking as a �proof of concept� in the case of Modula��
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� Introduction

This paper argues that inheritance� properly formulated� is a powerful modularity mecha�
nism� and can constitute the basis of a module manipulation language�

We arrive at our formulation of inheritance by observing that in languages supporting
multiple inheritance e�g�� ���� ��� ����� classes are burdened with too many roles� The
class construct is �large� and monolithic� We opt to simplify classes� and partition their
functionality among separate operators�

Classes are reduced to a simple notion of module � a mutually recursive scope� These
modules form a uniform space of values upon which operators act� The operators accept
modules as arguments� and produce modules as results� The notion of module with its
associated operations can thus be viewed as an abstract datatype�

The set of operators we present supports encapsulation� multiple inheritance� mixins
and strong typing in a single� cohesive language� These features have not been successfully
combined before�

Apart from the obvious relevance to object�oriented programming languages� our frame�
work can be used to introduce modularity to a variety of languages� regardless of whether
they support 
rst class objects�

Our approach is itself modular� Language designers can use this approach� and add�
remove or replace operators� This makes the bene
ts of extensibility and modi
ability asso�
ciated with object oriented programming� available at the language design level�

We demonstrate these points via the module manipulation language Jigsaw� For con�
creteness� we assume that Jigsaw manipulates modules written in an applicative language
with a type system based upon bounded universal quanti
cation ���� However� the discus�
sion remains virtually unchanged if modules are written in another language� In particular�
our operator de
nitions are not signi
cantly impacted by the use of an imperative language�
Similarly� though we assume a subtype relation� we do not rely on its particulars� Hence our
approach applies to languages without subtyping as well� These have type equivalence as a
trivial subtyping relation�

Jigsaw�s semantics are de
ned by a translation to an untyped � calculus augmented with
basic types� records� record operators� and let and where constructs�

The interesting part of the translation is that which de
nes modules and the operations
upon them� Jigsaw is a typed language that guarantees the type safe use of module operators�
However� we have chosen to de
ne the operators in an untyped � calculus� A typed calculus
is not used� because we do not know of one that can express all the module operators de
ned
here in their full generality�

Instead� we informally derive su�cient typing constraints on the primitive module oper�
ations� These constraints provide guidance as to the formulation of the typechecking rules
of Jigsaw� Under the crucial assumption that the types of modules are always completely
known� typechecking is straightforward� We do not give the formal type rules of Jigsaw here�
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P � object

f x � �� y � ��
dist � function�aPoint�

f
sqrt�sqr��x � aPoint�x�� � sqr��y � aPoint�y���

g
g

Pgen � �s�fx � �� y � �� dist � �aPoint�
q
s�x� aPoint�x�� � s�y � aPoint�y���g

Figure �� An object and its generator

but mention the relevant typing constraints on each operation�

The remainder of the paper is structured as follows� We begin by reviewing necessary
background material in section �� Section � discusses the many roles played by classes in
object oriented languages� Section � then demonstrates how each of these roles is supported
by Jigsaw�s operators� Section � discusses the application and implementation of the model�
Section � relates the present paper to previous work by the authors and others� Finally� we
present our conclusions�

� Background

��� Generators

In object oriented programming� objects include data and code that operates upon that
data� Objects are thus inherently self�referential� The standard technique for modeling self
reference is 
xpoint theory ����� Using 
xpoint theory� an object may be modeled using a
record�generating function called a generator following Cook ����� Figure � shows a simple
object and its associated generator function� This function takes a record as a parameter�
and returns a record as a result� The result record is similar to the object being modeled�
The object�s methods� such as dist� are represented by function valued 
elds in the result�
The object�s data are represented by 
elds with ordinary values e�g�� x and y�� All self
reference in the object is replaced by reference to the generator�s formal parameter� s� The
desired object is the least 
xed point of the generator function Y Pgen��

��� Record Operations

We now de
ne our record operations� Similar operations have been used in the study of
typed record calculi ��� ��� ��� ���� However� this paper is not concerned with the typing

�



problems raised by these operators� Here� record operations are only used in the de
nitions
of module operators� These� in turn� are used only when the types of their operands i�e��
modules� are exactly known� so that type safety is easily guaranteed�

Each record operator has a corresponding operator for generators see section ��� Related
operators are distinguished by subscripts e�g�� �r is a record operator� and �g is a generator
operator��� We denote records with r� r�� r�� names of record attributes with a� b and lists of
attribute names with A�

The operators used here are�

� Merge� kr� r� kr r� yields the concatenation of r� and r�� The records must not have
any names in common�

� Restrict� nr� rnra removes the attribute named a from r� If a is not de
ned� rnra � r�

� Project� �r� r�rA projects the record r on the names A� The names in A must be
de
ned in r�

� Select� �r� r�ra returns the value of the attribute named a in r� The name a must be
de
ned in r�

� Override��r� r� �r r� produces a result that has all the attributes of r� and r�� If r�
and r� have names in common� the result takes its values for the common names from
r��

� Rename� � � �r� r�a� b�r renames the attribute named a to b� The name a must be
de
ned in r� and b must not�

�For a record operator �r � �g is what is referred to in ��� as the distributed version of �
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MP � P override

f dist � function�aPoint�
f

�x � aPoint�x� � �y � aPoint�y�
g

g

MPgen � �s�Pgens��r fdist � �aPoint�s�x� aPoint�x� � s�y � aPoint�y�g

Figure �� A manhattan point inherits from a point

��� Inheritance

This subsection discusses the denotational semantics of inheritance ���� ��� ��� Inheritance
provides a way of modifying self�referential structures ���� When a value is modi
ed via
inheritance� all self reference within the result refers to the modi
ed value� Inheritance
involves manipulating the self reference within objects� Technically� this is achieved by
manipulating generators� before taking their 
xpoint ����� ���� Figure � illustrates this process�
The objectMP inherits from P� but specializes the distmethod� MP is modeled by a generator
that invokes the generator for P� This invocation yields a record that is combined using the
override operation with another record which represents the specialized or new methods�
In the modifying record� self reference is modeled in the usual way� by reference to the
generator�s parameter� P�s generator is passed this parameter as well� thereby binding self
reference in all methods to the modi
ed object�

��� Mixins

In Figure �� the keyword override is followed by a clause modifying the object P viz� f dist
� ��� g�� It is often desirable to denote such a modi
cation independently� and reuse it�
An example is given in Figure �� Such a denotable modi
cation is called a mixin� Mixins
represent an important form of reuse� but have been expressible only in dynamically typed
languages e�g�� ���� ����� where inheritance violates encapsulation� Support for mixins in an
encapsulated manner has been been the topic of recent research ��� ����

��� Abstract Classes and Frameworks

One of the most useful ideas in object�oriented programming is that of an abstract class� An
abstract class is an incomplete de
nition� in which one or more of the methods declared by
the class are not given de
nitions� The expectation is that these missing method de
nitions
will be provided in subsequently de
ned subclasses� In some languages� abstract classes have
no special linguistic support� Programmers de
ne �dummy� routines that typically produce
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a run�time error� More recent languages ���� ��� explicitly support abstract classes� In these
languages� methods that are unde
ned in the abstract class are identi
ed by special syntax�
Here we use the C�� terminology� and refer to such methods as pure virtuals�

Abstract classes are essential to the de
nition of frameworks� A framework is a collection
of classes designed to support a particular application in a modi
able and extensible manner�
The user of a framework will adopt it as a basis for his or her application� typically modifying
some of the framework�s abstract classes to tailor them to speci
c needs� Examples of
frameworks are ���� ��� ����

Abstract classes support a powerful form of parameterization� unique to the object ori�
ented paradigm� While standard parametrization allows entities to refer to parameters�
abstract classes close the loop by also allowing parameters to refer to the parameterized
entity i�e�� via a self construct��

Semantically� an abstract class may be modeled as an inconsistent generator� An in�
consistent generator has the form �s� � �e� where e � �� and � is a subtype of �� ���� This
captures the fact that self reference within the class �� assumes more methods than the class
provides ���� One cannot take the 
xpoint of such a generator� since its domain is a proper
subtype of its range� This models the fact that abstract classes must not be instantiated�

In many object oriented languages� types are identi
ed with classes and subtyping with
inheritance� In such languages� the notion of abstract class is often abused� by being pressed
into service as a substitute for a more versatile concept of interface� In this case� the abstract
class provides no de
nitions at all� only declarations� This is inescapable in such a language�
when multiple implementations of an abstraction are required� In languages where types
and subtyping are separated from classes and inheritance� this subterfuge is unnecessary�

The next section outlines functionality required of possibly abstract� classes in an object
oriented language� Following that� we present a set of operators on abstract classes that
support the required functionality�

� Roles of a Class

In a language supporting multiple inheritance� the class construct typically supports a large
subset of the following functions�

�� De
ning a module�

�� Constructing instances of a module de
nition�

�� Combining several classes together� This is characteristic of multiple inheritance�

�� Modifying a class� This function is characteristic of all inheritance systems� single or
multiple�
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�� Resolving name con�icts among class attributes� This can be done in various ways� by
renaming or by explicitly specifying the desired attribute�

�� De
ning sharing constraints among classes� When classes are combined� certain at�
tributes or groups of attributes may exist in several of the classes being combined�
The question is whether these attributes should be duplicated for each participant
class� or shared� Too often the semantic decision has been taken at the language level�
In fact� di	erent applications have di	erent needs in this respect� and programmers
should be able to make the choice�

�� Restricting modi
ability� Usually� all visible attributes of a module are subject to
modi
cation� It is sometimes desirable to restrict this �exibility� and state that a
certain attribute may not be modi
ed by inheritance� This is useful both from a
design point of view� and also for optimization�

�� Determining attribute visibility� Di	erent mechanisms may be available� to determine
visibility to users� heirs or �friends��

�� Accessing overridden attributes� It is common that a method in a modi
ed class makes
use� during computation� of the method it has overridden� using special notation�

In addition� if the language is strongly typed� we often 
nd that a class ful
lls additional
roles�

��� De
ning a type�

��� De
ning a subtyping relation�

Following other modern object�oriented language designs e�g�� ��� ���� we separate inher�
itance from subtyping�

The following section presents Jigsaw�s operator suite� The roles detailed above are
examined in turn� and� for each role� the relevant operators� described�

� The Jigsaw Operator Suite

��� Module De�nition

The primary de
nitional construct in Jigsaw is the module� A module is a self�referential
scope� binding names to values� A binding of name to a value is a de�nition� Unlike ML

����� modules do not bind names to types� Type abbreviations may be used� as syntactic
sugar�� Typing in Jigsaw is purely structural�

�In ML terms� only type declarations� not datatype declarations� are supported
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module

f x � �� y � ��
dist � function�aPoint�f x�Int	 y�Int g�

f
sqrt�sqr��x � aPoint�x�� � sqr��y � aPoint�y���

g
g � f de�ne x�Int	 y�Int	 dist�f x�Int	 y�Int g � Real g

Figure �� A module and its interface

Modules may include not only de
nitions� but declarations� A declaration gives the type
of an attribute� but no value for it� Declarations are used to de
ne �abstract classes��
Modules may be nested� Every module has an associated interface� which gives the types or
interfaces� for nested modules� of all visible attributes of a module� The subtyping relation
on interfaces is de
ned as interface equivalence� Two interfaces are equivalent if they have
exactly the same attribute names� and the attributes have equivalent types or interfaces�

Modules have no free variables� and module operators do not require access to the def�
initions of their operands� This allows for separate compilation� including inheriting from
separately compiled modules�

In the semantics of Jigsaw� all modules are modeled as generators� Module combination
operators are then modeled as functions that manipulate generators� and return new gener�
ators as results� The operator de
nitions make use of the record operations introduced in
section ���� All module operators employ the technique demonstrated above to manipulate
self reference� Modules with declarations are modeled as inconsistent generators� Module
operators can take inconsistent generators as operands and may return them as results�
Viewing Jigsaw as an abstract datatype� generators are the hidden representation used for
modules� Module operators rely on this representation� but users of the operators are isolated
from it�

��� Instantiation

A module M is instantiated by the expression instantiate M� The result of this expression
is an object� The module in Figure � can be instantiated into an object equivalent to P in
Figure ��

In an applicative language� all instantiations of a module are identical� Then why dis�
tinguish between a module and its instance � The main reason is typing� It is extremely
desirable to use instances polymorphically� On the other hand� module operations require
exact knowledge of the type of their operands� Distinguishing modules from instances allows
separate type rules to be given for each�

An alternative would be to introduce a new judgement into the type system� indicating
that a value is exactly of some type� in addition to the ordinary judgement that a value has
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some type� This solution is more verbose� Also� our solution is more natural� since modules
do denote a di	erent type of value generators� than objects which denote records��

Another reason for keeping modules and instances distinct is that the decision to make
module instances 
rst class values as in �Class�based� languages ����� need not imply that
modules themselves are 
rst class values� If modules are identi
ed with instances� the two
decisions cannot be separated� We do not want the use of our approach to constrain language
designers in this way� Subsection ��� discusses a language design where neither modules nor
instances are values� subsection ��� refers to a language where instances are values� but
modules are not� in Jigsaw� both modules and their instances are 
rst class values the
fourth option� making modules values while instances are not� is self�contradictory��

The semantics of instantiation are as described in section �� Instantiating a module is
modeled by taking the 
xpoint of the module�s generator�

��� Combining Modules

Two modules may be combined using the merge operation� The result is a new module�
in which all names declared in either of the inputs are declared� Name con�icts are not
permitted� and result in a static error� Note that the merge operator does not provide any
mechanism for resolving such con�icts� Other operators are used for this purpose� This is
one example of how de
nitions are simpli
ed in our approach�

The merge operator� kg� is de
ned below� It takes two generators as parameters and
produces a new generator as a result� Note that self reference in the two generators is shared
in the resulting generator�

kg� �g���g���s�g�s� kr g�s�

kg is commutative and associative� The merge operator is discussed further in the context
of sharing subsection �����

��� Modi�cation

One module may be modi
ed by another� This is an asymmetric operation� in which one
module overrides the other� This is supported by the override operation� M
 override M��
The override operator takes two modules and combines them� If an attribute is de
ned by
both modules� then the type of the attribute in M� must be a subtype of its type in M
� In
that case� the value from M� will appear in the result� Override is de
ned as�

�g� �g���g���s�g�s��r g�s�

�g is associative and idempotent� but not commutative� �g may also be derived from
the combination of merge and restrict de
ned below��
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��� Name Con�ict Resolution

Name con�icts can be resolved in several ways� One can explicitly choose one of the con�
�icting attributes in preference to all others� This eliminates the con�ict� but requires that
all modules share a common version of the attribute� This may not always be desired� Fur�
thermore� the types of the con�icting attributes may be incompatible� in which case such
sharing is impossible� Sharing is discussed in the following subsection�

An alternative is to eliminate the con�ict by renaming� This is always possible� and all
attributes remain available� The one drawback is that in a structure�based type system�
attribute names are meaningful for subtyping� and renaming may adversely e	ect polymor�
phism�

The renaming operator changes the name of a single attribute�

M rename a to b

The e	ect is equivalent to a textual replacement of all occurrences of the attribute name
a in M� by the name b� Attribute a must be declared by M� and b neither declared nor
de
ned�

�a� b�g � �g��s�gs�r fa � s�rbg��a� b�r

if g de
nes a� else

�a� b�g � �g��s�gs�r fa � s�rbg�

In the underlying record calculus� rename is derived from restrict and merge� Composing
the generator versions of restrict and merge in this manner is not possible� due to the presence
of self�reference� The type rule for rename must ensure that the attribute is renamed in the
type of the result�

��� Sharing

When modules are merged in Jigsaw� multiple de
nitions of an attribute give rise to errors�
In contrast� multiple declarations of an attribute are shared� and are perfectly legal�

Consider the expression

g� kg g� where g� � �s�fa � s�b� �g� g� � �s�fb � �g

The generator g� represents an abstract class� with an attribute b that is declared but
not locally de
ned� Attribute b is de
ned in g�� The application of kg will not cause
di�culties� even though both operands have a b attribute� This re�ects the intuition that
while de
nitions must be unique� declarations may be duplicated� Of course� this is only valid
as long as the declaration agrees with the de
nition� The de
nition must have a type that is
a subtype of the declaration� Similarly� two declarations may clash� as long as they have a
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subtype in common� Existing object oriented languages that recognize the notion of �pure
virtual� do not make this distinction� and treat identically all name clashes between classes
being combined� In contrast� in Jigsaw� declarations can help specify sharing constraints
among modules� at the granularity of attributes�

Sharing is facilitated by the restrict operator� The e	ect of a restrict operation is to
eliminate the de
nition of an attribute� but retain its declaration� Unlike records� it is not
generally possible to completely remove an attribute from a module� because the module may
contain internal references to the attribute� Restrict creates an abstract class� by making an
attribute �pure virtual�� Therefore� abstract classes may be created �after the fact�� The
attribute being restricted must be de
ned by the argument module�

The restrict operation is de
ned below� and is associative�

nga � �g��s�gs�nra

When several modules are combined via merge� sharing of con�icting attributes may be
speci
ed by restricting all but one� This supports con�ict resolution via explicit speci
cation�

Project is a dual of restrict� Rather than specifying which attribute to remove� we specify
which attributes to retain� A module� M� and a list of attributes� A� are the inputs to
the project operation� Project requires that all names in A be de
ned by M� The semantic
de
nition for project is

�g A � �g��s�gs��rA

��	 Restricting Modi�cations

The freeze operator accepts an attribute name� a� and a module as parameters� and produces
a new module in which all references to a are statically bound�

Some languages support this using the notion of non�virtual attributes static binding��
Static binding can be achieved by simply not referencing an attribute through self� However�
this does not allow for changing the status of a virtual attribute to non�virtual e�g� as in
Beta ������ In addition� it complicates the model� since not all attributes are referenced in
the same way � there are two kinds� declared di	erently� In our model� it is preferable to
have only virtual attributes declared� and perform the change by means of an operator on
generators� The attribute being frozen must be de
ned�

freeze a � �g�Y �f��s�gs�r fa � fs��rag��

This de
nition deserves some discussion� The result is a generator� the 
xpoint of a
generator generating function� q � �f� � � �� The generator Y q� agrees with g� with the
exception of its self reference to attribute a� Regardless of the value of s� all references to s�a
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within the methods of Y q� are bound to fs��ra � Y q�s��ra� When the 
xpoint is taken
again� all references to s�ra will be equal to Y Y q���ra � Y g��ra�

Freeze has a dual operation� freeze all except� that freezes all features of a module M�
except those speci
ed in the list A� The attributes listed in A must be de
ned by M�

freeze all except A � �g�Y �f��s�gs�r fs��r s�rA���

Overriding s with fs�� rather than just fa � fs��rag� means that all de
ned attributes
are being frozen� We then override again� with s�rA� guaranteeing that the attributes in A

will indeed get there values from s� and therefore still be subject to rede
nition�

��
 Attribute Visibility

Visibility control is implemented by means of the operations hide and show� M hide a elimi�
nates a from the interface of M� The attribute a must be de
ned by M�

hide a � �g��s�freeze a�g�s�nra

The hide operation involves freezing the attribute� so that all references to it will not be
in�uenced by subsequent changes to self� In addition� the attribute must be removed from
the result� and the type rule for hide must remove a from the type of the module�

Conversely� M show A hides everything except the speci
ed attributes� All attributes
listed in A must be de
ned by M�

show A � �g��s�freeze all except A�g�s��rA

The duality between show and hide is apparent in the use of �r instead of nr� and in the
use of freeze all except instead of freeze�

��� Access to Overridden De�nitions

Access to overridden de
nitions is supported through the use of the copy�as operator� M
copy a as b creates a copy of the a method� under the name b� The a method can now be
overridden� while the old implementation remains available under the name b� M must not
declare an attribute b� but must de
ne a�

Consider Figure �� which also demonstrates the use of mixins� The intent here is that
the BorderMixin module modi
es the Window module by adding a border� to be displayed
around the window� This requires a new display routine� which 
rst displays the window�s
body� and then surrounds it with a border� BorderMixin declares an unimplemented routine
display�body� which is invoked within the display routine� Before overriding Window with
BorderMixin� Window�s display routine is copied as display�body�
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BorderMixin � module

f borderWidth � �� borderColor � red�
display � function�dontCare� Unit�

f
displayBorder���
displayBody���

g
displayBorder � function�dontCare� Unit� f ��� g
displayBody � Unit � Unit�
g

Window � module

f x � �� y � ��
display � function�dontCare� Unit� f ��� g
g

BorderWindow � Window copy display as displayBody � BorderMixin�

Figure �� Using a Mixin

Note that renaming display to display�body in Window would be inappropriate� When
display was modi
ed by BorderMixin� references to display within Window would not be mod�
i
ed� De
ning a display�body routine that called display and adding that to Window would
yield an in
nite recursion once the modi
cation by BorderMixin was performed�

The de
nition is straightforward

copy a as b � �g��s�let super � gs� in super kr fb � super�rag

� Application and Implementation

In view of the di�culty of introducing new languages into widespread use� it is extremely
valuable to be able to incorporate new linguistic developments in an evolutionary manner�
Adding operators like those de
ned in this paper to existing languages is therefore an at�
tractive possibility�

We discuss two options for achieving that goal� First� it is possible to add modules to a
language that does not have them� Second� our framework can be applied to object oriented
languages� to enhance their expressive power�

��� Adding Modules to Existing Languages

Many languages do not have adequate modularity constructs� These include widely used
programming languages e�g�� C ����� Pascal ������ as well as countless special�purpose and
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�little�languages� ��� Column ��� where the e	ort of designing speci
c mechanisms for mod�
ularity is di�cult to justify� but which could still bene
t from such mechanisms�

The simple notions of module and interface de
ned above are largely language indepen�
dent� This is because we specify neither the value set used in de
nitions� nor the form of
the types used in declarations� One requirement is that the language being �modularized�
support recursion� since modules are mutually recursive scopes� For imperative languages�
the operator de
nitions must be modi
ed� but their essential character remains the same��

Suppose we wish to de
ne and manipulate modules consisting of statements in some
programming language� L� The de
nitions in modules will bind names to denotable values
of L� For example� if L � C� the denotable values will include C functions and variables�
Declarations and module interfaces will bind names to L types in fact� since modules may
be nested� de
nitions may also bind names to modules� and declarations may bind names to
interfaces�� Again using C as our example� the typing rules for module operators will rely
on C type equivalence as the subtyping relation � mentioned above�

The resulting language is not object�oriented� since it does not support 
rst class ob�
jects� Nevertheless� it employs inheritance� Inheritance supports module interconnection by
combining self reference among modules� and� of course� allows existing code to be extended
and modi
ed�

A wide range of languages can be extended as described here� Many of these languages are
dynamically typed� This restricts the degree of static interface checking possible� However�
any language that is extended with Jigsaw style modules gains substantial bene
ts from
encapsulation� separate compilation for compiled languages�� modi
ability and the ability
to de
ne partially speci
ed modules analogous to abstract classes�

��� Extending an Object�Oriented Language

We are currently implementing an upwardly compatible extension of Modula�� ���� incorpo�
rating most of the operators described in this paper� In this extension� the operators are
applied not to the modules of Modula�� but to its classes known as object types���

Naturally� the full �exibility of Jigsaw is not supported� Still� the resulting language
supports strong typing� multiple inheritance and mixins in a modular manner�

The implementation is e�cient enough to 
t into a practical programming language like
Modula��� Modula�� restricts subtyping by making it dependent on the order in which
attributes are speci
ed� and on the boundaries between constituent object types� These
restrictions� coupled with the fact that our modules never have any free variables� lead
to an implementation based upon a straightforward extension of standard dispatch table
techniques� Each object type is represented by a dispatch table� and operations such as
merge and override involve concatenation of dispatch tables� The tables include both pointers

�Imperative versions of these operators have been de�ned in ���

�An early� less ambitious version of this work appeared in ���
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to code for method execution� and o	sets within objects� O	sets are necessary because
under multiple inheritance� instances of subclasses do not necessarily share a common pre
x
with instances of parent classes� The main subtlety lies in manipulating these o	sets� since
previously published schemes ���� ��� ��� cannot be used in the presence of mixins� The
details of the implementation are beyond the scope of this paper� and are discussed in ����

� Related Work

��� Generator Operations

Many of the operators presented here were 
rst proposed by Cook in ���� There� a general
mechanism for deriving generator operations from record operations was described� How�
ever� the operators de
ned by Cook were used to illustrate the principle of manipulating
self�reference by means of generators� In modeling language constructs� more elaborate op�
erators were used� In particular� it was necessary to introduce parametric abstractions called
wrappers� These were later elevated to explicit language constructs called mixins in ���� and�
independently� in �����

The novelty here is in providing a comprehensive suite of operations� and making them
explicit linguistic constructs� In addition� the uniform use of generators to model all def�
initional structures is new� The operator suite also includes new operations namely hide	
show	 freeze	 freeze�except and copy�as��

��� Mixins

This work grew out of an earlier study of mixin�based inheritance ���� Some of the limitations
of mixin based inheritance have been addressed here� These include the absence of 
ne�grain
sharing� of renaming facilities and of a symmetric merge operation�

Until now� mixins have been modeled as parametric abstractions called wrappers� Cook
used an operator combining a generator and a wrapper in his compositional semantics of
inheritance ���� This operator was also used by Hense ����� In ���� the override operation
was de
ned as a binary operation on wrappers� enabling composition of mixins� The main
purpose of wrappers was to allow access to overridden de
nitions� The required functionality
can be achieved using explicit operator for this purpose� This allows the use of generators
instead of wrappers� simplifying de
nitions� This re�ects our strategy of simplifying the
structure and pushing more functionality into the operator set�

��� Mitchell

Mitchell� in ����� presented an extension to the ML module system that is in some ways
similar to our work� Mitchell also chose to incorporate inheritance into a module language� an

��



extension of the ML module system ����� Some similar operations are supported� embedded
in a more conventional syntax� Underlying both systems are denotational models involving
the manipulation of self reference� and typing based on bounded quanti
cation� There are
many di	erences� however�

Central to this paper is the notion that inheritance itself can be used as a modular�
ity mechanism� Inheritance is an essential part of the module language� �gluing� modules
together by merging self�reference� Such a formulation of inheritance must preserve encap�
sulation� This contrasts with Mitchell�s view of inheritance as �a mechanism for using one
declaration in writing another� �sic�� Even though inheritance is part of the module system�
it is not essential to it� Instead� the ML notions of structures and functors are used to
de
ne and interconnect modules� Some of the inheritance constructs de
ned in ���� violate
encapsulation viz� copy except	 copy only�� These constructs inherently require knowledge
of the internal structure of the �parent� module�

A consequence of the semantics of copy except	 copy only is that separate compilation is
compromised� A parent module must always be compiled before its use� and any change
to it requires recompilation of its heir modules ����� We support inheriting from separately
compiled modules without restriction�

Our approach has the bene
ts of simplicity and modularity� It does not rely upon de�
pendent sums or products� or on multiple universes of types� It is explicitly formulated
as an abstract data type for manipulating modules� where all functionality is supported
by operators� Making the structure explicit makes it easier to apply the framework to a
broad spectrum of languages� Language designers may easily add or modify operations as
necessary� An expression based language also allows users to compose operations more freely�

Our framework supports abstract classes and mixins�� Mixins cannot be expressed in
the framework of ����� and there is no explicit support for abstract classes though the
traditional device of giving dummy de
nitions for pure virtual methods is always available�
with its concomitant disadvantages��

On the other hand� Mitchell�s approach supports modules implementing abstract data
types� This allows for combining traditional algebraic or higher order� data types with
object�oriented formulations� Our model supports only the pure object oriented approach�
We would like to extend our framework with an analogous set of operators for abstract data
types� However� we face technical di�culties related to the typing of existential data types�

A related issue is our use of structural subtyping� in contrast to �name�based� subtyping
in ����� Both forms are useful� currently� we focus on structural subtyping� which is more
appropriate between di	erent modules or programs ����

Finally� unlike ����� we give semantic de
nitions of all operations�

�Abstract classes are mentioned in ����� but only as substitutes for interfaces
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� Conclusion

We have presented a collection of operations on modules� that supports a uniquely wide range
of object oriented programming techniques� including frameworks� multiple inheritance and
mixins� as well as separate compilation� all in a type safe and encapsulated manner� The op�
erations are based on a uniform representation of modules as generators� This representation�
together with the operations� de
ne modules as an abstract data type�

Module operations are based on the novel notion that inheritance is productively viewed
as a mechanism for modular program composition� As such� inheritance is independent of
the notion of 
rst�class instances� with which it is usually associated�

The operations can be incorporated into a variety of languages� are semantically well
de
ned� and e�ciently implementable�

The operations de
ne a module manipulation language that is applicative and expression�
oriented� rather than statement oriented� For such a language� realistic programming fea�
tures can be e	ectively modeled using simple semantic constructs� such as generators� The
language is itself modular� allowing for easier extension� modi
cation and experimentation�
Finally� we believe such a language is also easier to learn� use and reason about�
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