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ABSTRACT

This dissertation provides a framework for modularity in programming lan-

guages. In this framework, known as Jigsaw, inheritance is understood to be an

essential linguistic mechanism for module manipulation.

In Jigsaw, the roles of classes in existing languages are “unbundled,” by pro-

viding a suite of operators independently controlling such effects as combination,

modification, encapsulation, name resolution, and sharing, all on the single notion

of module.

All module operators are forms of inheritance. Thus, inheritance is not in

conflict with modularity in this system, but is indeed its foundation.

This allows a previously unobtainable spectrum of features to be combined in a

cohesive manner, including multiple inheritance, mixins, encapsulation and strong

typing.

Jigsaw has a rigorous semantics, based upon a denotational model of inheritance.

Jigsaw provides a notion of modularity independent of a particular computa-

tional paradigm. Jigsaw can therefore be applied to a wide variety of languages,

especially special-purpose languages where the effort of designing specific mecha-

nisms for modularity is difficult to justify, but which could still benefit from such

mechanisms.

The framework is used to derive an extension of Modula-3 that supports the new

operations. An efficient implementation strategy is developed for this extension.

The performance of this scheme is on a par with the methods employed by the

highest performance object-oriented language processors currently available.



In Memory of my Father, Peretz Bracha, 1933-1989.
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CHAPTER 1

INTRODUCTION

Language design is reminiscent of Ptolemaic astronomy - for ever in
need of further corrections.
Jean-Yves Girard

This dissertation addresses two problems: the problem of multiple inheritance

in object-oriented programming languages, and the problem of modularity in pro-

gramming languages.

On the surface, it may appear that these are two separate problems, and should

be dealt with separately. Indeed, this study began as an investigation of multiple

inheritance. A chief conclusion of that study is that the two problems are deeply

related, and that solving either problem implies solving the other. In a sense, the

two problems are one and the same.

This chapter aims to provide the reader with a bird’s eye view of the dissertation

as a whole. Accordingly, the chapter is structured as a dissertation in miniature.

Each of the following sections mirrors one of the succeeding chapters.

Following a brief overview of the problem in section 1.1, section 1.2 discusses a

partial solution. Then, in section 1.3, a comprehensive solution is sketched. The

theoretical foundation for this work is outlined in section 1.4. Section 1.5 shows how

the solution manifests itself in the context of an existing programming language,

and section 1.6 discusses implementation. The chapter concludes with a summary.

1.1 Understanding the Problem

The first order of business is to understand what the problems are. Chapter 2

is entirely devoted to that task. Here, only highlights are given, with the objective
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of reviewing fundamental concepts, and establishing that a problem does in fact

exist.

1.1.1 Inheritance

The first and foremost concept in this dissertation is inheritance itself. Inheri-

tance is a powerful linguistic mechanism, introduced by object-oriented languages

[20, 24]. Inheritance allows an incremental style of programming. Given an existing

piece of software, the programmer can create a new one, simply by specifying how

the new piece differs from a preexisting one.

The term “piece of software” is rather imprecise. It is more accurate to say

that inheritance allows the programmer to create definitions, by specifying how

new definitions differ from previous ones.

In object-oriented languages, software definitions that may be inherited are

usually called classes.

Figure 1.1 shows an example of single inheritance. In single inheritance, a single

preexisting definition is used as a basis for a new definition.

In this example, two classes are defined. The syntax class Id is . . . binds the

identifier Id to a class, specified by whatever constructs follow the keyword is. The

first class is defined by specifying its attributes. Various object-oriented languages

support different kinds of attributes, with varying characteristics and terminology.

Chief among these are methods, which are function valued attributes which may

class road vehicle is
number of wheels = 4;
number of axles = number of wheels/2;

end;
class eighteen wheeler is inherit road vehicle

number of wheels = 18;
gross weight = 10000;

end;

Figure 1.1. A simple example of inheritance
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be redefined via inheritance, as described below. Other kinds of attributes are not

important at this point.

What is important is how the second class is defined by inheriting from the first,

as indicated by the phrase inherit road vehicle. As a result, class eighteen wheeler

has all attributes of road vehicle, except those attributes it has overridden by

supplying alternate definitions, such as number of wheels. The inheriting class may

also add additional attributes, such as gross weight.

This situation is often depicted using graphs, as in Figure 1.2. Graphs for

single inheritance are always trees. In multiple inheritance, a new definition is

created using several prior definitions. The graph induced is a DAG (directed

acyclic graph).

Single inheritance has won substantial acceptance as a useful technique for

structuring programs. Multiple inheritance is much more controversial. There is no

agreement on the appropriate semantics for multiple inheritance. In most current

languages, multiple inheritance violates encapsulation [65]. The rules governing

multiple inheritance are complex. Proponents of multiple inheritance argue that it

is essential, while critics contend that the perceived need for multiple inheritance

is a symptom of poor program design, and that single inheritance is sufficient.

&%
'$

&%
'$

6

road vehicle

eighteen wheeler

Figure 1.2. Inheritance hierarchy



4

Finding a formulation of multiple inheritance that is rigorous, semantically clean

and preserves modularity remains a difficult yet important problem.

1.1.2 Abstract Classes and Frameworks

One of the most useful ideas in object-oriented programming has been that

of an abstract class. An abstract class is an incomplete class definition, in which

one or more of the methods used by the class are not defined.1 The expectation

is that these missing method definitions will be provided in subsequently defined

subclasses. In some languages, abstract classes have no special linguistic support.

Programmers define “dummy” routines that typically produce an error if executed.

More recent languages [23, 51] explicitly recognize abstract classes. In these lan-

guages, methods that are undefined in the abstract class are identified by special

syntax. Here such methods are referred to as pure virtuals, using the terminology

of C++.

Abstract classes are essential to the definition of frameworks [33]. A framework

is a collection of classes designed to support a particular application in a modifiable

and extensible manner. A framework is used as a basis for an application. Typically,

some of the framework’s abstract classes are modified and extended by inheritance

to tailor them to specific needs. Examples of frameworks are [42, 45, 70, 73].

Abstract classes support a powerful form of parameterization, unique to the

object-oriented paradigm. While standard parameterization allows structures to

refer to parameters, abstract classes close the loop by also allowing parameters

to refer to the parameterized structure. Abstract classes are fundamental to the

research presented in this dissertation.

1.1.3 Module Manipulation

Many non-object-oriented languages support some formal notion of module.

However, there are usually only very limited facilities for manipulating modules.

1In some languages, a declaration of the undefined method may be provided, giving only type
information.
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Mechanisms are provided for module interconnection, but these are usually ad

hoc. An important exception is ML [52], which provides a well developed module

manipulation language [44]. Integration of inheritance into ML in a modular fashion

is the subject of ongoing research [53].

This thesis argues that inheritance is really an essential module manipulation

mechanism. In languages without inheritance, its effects are obtained by extra-

linguistic means (e.g., text editing). Thus, inheritance represents a natural step in

the progression of linguistic support for modularity. Just as modules and interfaces

subsume some functions supported by linkers, inheritance subsumes some functions

of text editors. Incorporating inheritance in module manipulation languages is

therefore a necessity.

In summary, the problem this dissertation addresses can be stated in two ways:

find a formulation of multiple inheritance that is expressive, rigorous, semantically

clean and preserves modularity; or, develop a comprehensive module manipulation

language incorporating inheritance.

1.2 Mixins

Having described the problem, it is time to consider solutions. This section

presents one solution, albeit partial. Valuable in itself, the partial solution is also

a step leading to a more complete solution in section 1.3.

The key to a solution is to stop thinking about inheritance in operational terms.

Consider the definition of eighteen wheeler in example 1.1 once again. The definition

binds the identifier eighteen wheeler to the structure given after is.

To understand the meaning of a complex construct, it is useful to subdivide

it into parts, and attempt to understand each part separately. The meaning of

the structure as a whole should then be constructed from the meanings of its

components. In this case, there are three parts: The keyword inherit; an identifier,

road vehicle; and the rest of the declaration. It is clear that road vehicle represents

the superclass, but what does the keyword inherit actually stand for? And what

is the entity defined by “the rest of the declaration,” something there does not
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even appear to be a name for? It turns out that inherit denotes an operator, that

combines the other two parts of the structure. The third part of the declaration

is something that will be called a mixin. Note that mixins cannot be named in

existing programming languages. They are always an anonymous component of a

larger class structure.

The easiest way to understand a mixin is to view it as a function from classes

to classes. In that case, inherit stands for a form of function application. With

this understanding, an improved formulation of inheritance is possible. The fact

that mixins cannot be given names is now an obvious anomaly, and itself violates

modularity. Once this anomaly is corrected, a form of multiple inheritance that

preserves encapsulation is natural. However, this formulation, known as mixin-based

inheritance, does not solve all the problems a module manipulation language must

face.

Mixin-based inheritance is derived from an understanding of what mixins are,

and will be described in detail in Chapter 3. Another insight has been that mixins

and classes are composed by means of operators. This leads to a better solution,

as outlined below.

1.3 Jigsaw

Jigsaw is a framework for modular programming languages. The word “frame-

work” is used here in the much same sense given in subsection 1.1.2. The precise

nature of the Jigsaw framework is the topic of Chapter 4.

The word “modular” here is used, quite deliberately, in two distinct ways. First,

the languages designed using Jigsaw are (modular programming) languages; they

support modular programming since programs in these languages may be divided

into separate modules. Second, Jigsaw is highly modular in its own conception, per-

mitting various module combinators to be included, omitted, or newly constructed

in various realizations. This modular structure is inherited by all languages derived

from the Jigsaw framework. Consequently, the languages produced are modular

(programming languages).
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In Jigsaw, the roles of classes in existing languages are “unbundled,” by pro-

viding a suite of operators independently controlling such effects as combination,

modification, encapsulation, name resolution, and sharing, all on the single notion

of module.

All module operators are forms of inheritance. Unlike most formulations of

inheritance, here inheritance is not in conflict with modularity. On the contrary,

inheritance is the basic mechanism for module interconnection.

This allows a previously unobtainable spectrum of features to be combined in a

cohesive manner, including multiple inheritance, mixins, encapsulation and strong

typing. Traditional multiple inheritance is interpreted as an unsuccessful attempt

to enhance the modularity of object-oriented programs. In the new framework,

the distinction between single and multiple inheritance disappears, but the desired

functionality remains available.

Jigsaw provides a notion of modularity independent of a particular computa-

tional paradigm. Jigsaw can therefore be applied to a wide variety of languages,

especially special-purpose and “little-languages” [4, Column 9], where the effort of

designing specific mechanisms for modularity is difficult to justify, but which could

still benefit from such mechanisms.

Jigsaw can be thought of as an abstraction, to be reified by application to a

computational sublanguage, Lc. Jigsaw abstracts over Lc, but the abstraction is

not merely parameterization. The interaction between Jigsaw and the language

of computation is potentially bidirectional. This structure is exactly analogous to

that typical of abstract classes and frameworks in object-oriented languages.

1.4 Semantics

Jigsaw has a rigorous semantics, based upon a denotational model of inheritance

[17, 59]. Indeed, Jigsaw would not have been conceived without the insights derived

from the study of the denotational semantics of object-oriented languages. The

Jigsaw framework maps very directly to the underlying semantics. Modules have

simple denotations, which are just functions from records to records. All module
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manipulation operators are defined by means of operations upon the denotations

of modules. The denotational semantics are simpler than those of existing object-

oriented languages, even though expressive power has been enhanced. Of course,

the reason for this is that the linguistic constructs were inspired by the denotational

semantics.

The reader should understand that this study does not introduce new theory.

Instead, recent theory is applied to produce a new language design. Much work in

denotational semantics is concerned with explaining existing linguistic constructs.

That is one phase in a two phase process. The second step is using the under-

standing gleaned in the first phase to design better languages. This dissertation is

concerned with this second phase.

1.5 Modula-π

Modula-π is an extension of Modula-3 [55] that supports some of the key

operations of the Jigsaw framework. The purpose of this extension is to demonstrate

the applicability of Jigsaw to realistic programming languages.

Extending an existing language has several benefits. An upwardly compatible

extension means that existing code is not invalidated. The existing implementation

can be used as a basis for the extension. As a result, realistic performance can

be achieved. For the language designer, using an existing language as a base is a

mixed blessing. Designing an upwardly compatible extension is a difficult challenge.

Many irrelevant details must be considered, and the purity of the model may be

compromised. On the other hand, the rich functionality of the base language is

already defined. The end result can be a tool that is realistic and practically useful,

both in the range of its features and in its performance. It would be difficult, if not

impossible, to achieve this goal within the scope of a dissertation, if a new language

were to be defined and implemented.

A programming language’s value is greatly enhanced if it can be implemented

efficiently. This is discussed in the next section.
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1.6 Implementation

Jigsaw is a linguistic framework, applicable in many different contexts. Each

such context may place different requirements on an implementation. The main

focus of implementation in this work has been on the Modula-π language.

The uniform structure of Jigsaw allows for a simple yet efficient implementation

scheme. Simple modules (or object types in the case of Modula-π) are translated

into dispatch tables which refer to methods. Object type instantiation, as usual,

leads to the creation of an object, containing data and housekeeping information.

Objects of course refer to the dispatch tables.

Given this representation, module operators are implemented as operations on

dispatch tables, concatenating or modifying them as appropriate. The representa-

tions of corresponding instances are also manipulated in a similar manner.

The exact scheme used is presented in Chapter 7. It is an extension of existing

techniques for implementation of object oriented languages [23]. The performance

of this scheme is on a par with the methods employed by the highest performance

object-oriented language processors currently available.

There are also published schemes for implementing more flexible language con-

structs, and their application to a language like that described in Chapter 4 is

briefly analyzed.

1.7 Conclusions

In conclusion, it is appropriate to summarize key results, disclose some of the

present research’s limitations, and examine possible lines for future inquiry.

The solutions investigated here still leave certain issues unresolved, but they

go a long way toward a fully satisfactory answer, and they point out promising

directions toward a complete solution.

Jigsaw’s chief limitation is that it is restricted to structural typing. Structural

typing is fundamental to a truly modular system, and has naturally been the main

focus of this work. Nevertheless, name-based typing and abstract datatypes are

important issues that should be addressed. The prospects for an extension of Jigsaw
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dealing with name based typing are good. Abstract data types present a more

difficult challenge. Jigsaw is defined by means of a denotational semantics. An

axiomatic characterization of Jigsaw would be desirable as well.

Despite the admitted weaknesses just mentioned, a general and useful framework

has been established for modular, incremental software construction. A module ma-

nipulation language that meets the criteria of expressiveness, theoretical soundness,

efficiency and language independence has been developed.

All of the above issues, as well as related work, are discussed in Chapter 8. Now

it is time to move on, to a full treatment of all the issues raised in this chapter.



CHAPTER 2

THE PROBLEM

Operational reasoning is a tremendous waste of mental effort.
Edsger Dijkstra.

This chapter illustrates the problem that this dissertation addresses: the diffi-

culties of existing programming languages with respect to modularity. The concept

of module is defined, and criteria for a modular programming language are given.

Then, the evolution of programming language design toward enhanced support for

modularity is examined.

Limitations of existing programming languages are discussed in light of the

analysis mentioned above. No existing language meets all the criteria for a modular

programming language. Special scrutiny is reserved for languages with inheritance.

These languages have a variety of problems with respect to modularity. The well

known encapsulation problems first demonstrated by Snyder [64, 65] are reviewed.

In the process of evaluating current language designs with respect to modularity,

some novel insights are gained. Inheritance is identified as a necessary module

manipulation mechanism. In addition, another important limitation on modularity,

the absence of mixins, is discussed.

The chapter is organized by topic, not by language. Specific languages that

exhibit a particular problem are mentioned in the appropriate section. The final

section summarizes the problems of a variety of important programming languages.
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2.1 Modules and Modularity

2.1.1 What is a Module?

The terms module, interface and system are defined informally below. The

definitions are mutually recursive.

A system is a group of interconnected modules, that together fulfill some useful

functionality.

An interface specifies a set of services, including conditions which must be met

so that the services can be provided. Ideally, such an interface constitutes a logical

specification of a module, stating necessary and sufficient conditions for its use, and

giving a description of the system state after the module has provided a particular

service.

In practice, such specifications cannot be verified automatically, and so, pro-

gramming language interfaces are restricted to syntactic information that can be

statically checked. A module is anything that supports an interface.

Using modules has two main implications.

1. Many different modules can be used at a given point, to provide a particular

functionality. Anywhere a certain interface is required, any module that

supports that interface can be used. Alternative modules can implement an

interface, and can be interchanged freely, without influencing other modules

in a system. It is therefore easier to locate and correct a performance problem

or a reliability problem. Systems can be designed so that every module has

sole responsibility for a particular function. Multiple modules can implement

an interface simultaneously. In the context of programming languages, this

means multiple implementations coexisting in a single program.

2. A module can be used at many different points. A module supporting an

interface can be used wherever the interface is required. This means that

the same module can be (re-)used in many different contexts. Correcting a

deficiency in the design of a module, corrects the deficiency everywhere the

module is used.
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Both these phenomena contribute to localization, making it easier to maintain

a system. Because a module is independent of its context, it can be developed and

understood independently, making it easier to design and maintain.

2.1.2 Desiderata for Modules

1. Encapsulation. Modules must be able to encapsulate information within

themselves, so that no other module may access it. This guarantees that

a module can be used only in accordance with its interface.

2. Composability. Any module can be combined with any other module with a

compatible interface. The behavior of an assembly of modules can be deduced

from the behavior of its component modules and their common interfaces.

3. Hierarchy. Modules can be built out of smaller modules, which in turn can

be built out of smaller modules, and so on. This is distinct from composition,

where modules are combined at the same level.

4. Modifiability. This property actually stems from hierarchy and composition-

ality. A module can be extended by combining it with other modules, or

submodules of it can be replaced by alternate submodules. The replacement

can be a modification of the original submodule.

5. Static safety. As noted above, it is generally impossible for a compiler to

verify statically that a module is used correctly with respect to its interface.

However, those syntactic properties that can be statically verified, should be

checked.

6. Separate Compilation. A module may be separately compiled. This is nec-

essary for parallel development, and reflects the fact that modules can be

independently developed.

7. Generality. This is a rather vague notion. One advantage of modularity

is reusability. The more general a module is, the more contexts it can
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successfully be reused in. The constructs of the language determine what

degree of generality can be achieved by modules in that language. Polymor-

phism is a very important property that influences the degree of generality

attainable. Polymorphism is a natural consequence of untyped specifications,

but obtaining polymorphism while maintaining static typing is a difficult

problem.

8. Manipulability. Ideally, modules are first class values in the language. This

allows combinations of modules to be described in the language, and hence

to be modularized themselves.

2.1.3 The Trend Toward Modularity

There has been a historic movement in programming language design toward

providing increasing support for modularity. The trend has been to move function-

ality that was supported by tools in the program development environment into the

language. Explicit linguistic support for modularity has several advantages. Various

language-specific semantic consistency constraints can be imposed. Features are

also much more likely to behave in a standard and portable way if they are defined

within the language than if they are implementation dependent.

The need for separate compilation was recognized early on, beginning with FOR-

TRAN. Separate compilation has been supported through external linkage. The

minimum requirement is that the language processor recognize external references,

and produce sufficient information for an extra-linguistic tool (the linker) to effect

the module interconnection.

This state of affairs has several well known drawbacks. No static typechecking is

performed across module boundaries. There is also poor support for encapsulation;

typically, all globals in a module are available to other modules.

Later languages such as CLU [43], Ada [21], Modula-2 [74], Modula-3 and others

provide a structured way of specifying modules and their interconnection. Formal

notions of module and interface are part of the language. The language semantics

guarantee that modules are used in accordance with their interface. This means that



15

modules may explicitly encapsulate information, and that intermodule typechecking

is supported.

Unfortunately, many functions related to modularity are still not supported in

these languages. In practice, tools from the surrounding environment are used to

perform these functions. This will be demonstrated in the following sections, where

modularity problems in existing languages are examined.

2.2 Modularity Problems in Existing Languages

2.2.1 Flat, Global Name Spaces

In most languages, there is a flat, global name space for modules. This makes it

difficult to resolve name conflicts. If a conflict arises, one of the conflicting modules

must be renamed. Since modules are defined at the “top level,” there is no scope

in which a renaming operator can operate within the language. The only way to

achieve the desired renaming is then physical editing of the module text. Editing

is undesirable for several reasons. First, it is a manual process and hence laborious

and error prone. Second, editing leads to the creation of multiple versions of a

module, complicating program maintenance. Third, it requires recompilation of

the edited modules. The disadvantages of renaming by editing are aggravated by

references to a module in other modules. Such references often arise when specifying

intermodule connectivity. Examples would be the use of class declarations in C++

header files, or the use of import declarations in the Modula language family.

This is illustrated in Figure 2.1, where renaming module1 requires changing not

only module1 itself, but additional modules, such as module3. Each such additional

module module3;
import module1, module2;

.

.

.
module1.procedure2(module2.function3(2) + 5);

Figure 2.1. Use of import declarations
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module now has the same problems of multiple versions and recompilation. Fur-

thermore, if source code is not available for both conflicting modules, renaming by

editing is not possible. If large scale reuse [19] becomes a reality, object modules

provided by different vendors have to be combined, and name conflicts will become

harder to avoid.

In practice, verbose naming conventions are used to minimize name conflicts,

and the scale of reuse is presently small enough for the problem to be kept under

control. Of course, if the problem is not addressed, the scale of reuse may never

grow.

A global name space is a violation of the hierarchy criterion (3) mentioned

above. There must not be a “top level” of the module hierarchy. As noted by

Bertrand Meyer, real systems have no top [51][pg. 47].

2.2.2 Lack of Inheritance

This subsection makes the case that inheritance is really a module manipulation

mechanism. This is demonstrated in Figures 2.2 and 2.3.

In Figure 2.2, two classes are defined. The first class, Point, describes points in

the plane. A Point has coordinates x and y, and two methods. The dist method

computes the distance to another Point passed as a parameter. The method closer

determines if the Point is closer to the origin than its parameter, aPoint.

The second class, Manhattan point, is derived from Point by inheritance. The

only difference between a Point and a Manhattan point is the notion of distance

they employ. Note that when the closer method is invoked on a Manhattan point,

the new dist method will be used, even though no explicit change has been made

in the closer method. This illustrates an essential characteristic of inheritance;

modifications are reflected in all self-reference within a structure.

The process of inheritance is represented graphically in Figure 2.3, using the

metaphor of a jigsaw puzzle. Figure 2.3(a) shows a pictorial representation of class

Point. The Point class is a module, composed of submodules which are its attributes.

The derivation of Manhattan point from Point is schematized in 2.3(b) and (c). The
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class Point is
x = 0; y = 0;
dist = function(aPoint) {

sqrt(sqr((x - aPoint.x)) + sqr((y - aPoint.y)))
}

closer = function(aPoint) {
dist(Point(0,0)) < aPoint.dist(Point(0,0))
}

end;
class ManhattanPoint is inherit Point
dist = function(aPoint) {

(x - aPoint.x) + (y - aPoint.y)
}

end;

Figure 2.2. Code for Point and Manhattan Point.
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Figure 2.3. Inheritance as module manipulation.
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original definition of distance, Dist, is removed in (b). Then, a new definition,

Dist*, is inserted instead. The references to the distance function in other parts

of the class now refer to the new definition. This is exactly what one expects to

happen when replacing one physical part by another within an assembly of parts.

In a modular system, it is always possible to remove a module from a larger

assembly of modules, and then insert another, compatible module into the assembly.

In the jigsaw puzzle metaphor, inheritance amounts to picking up a piece of the

puzzle, and replacing it with another piece. The new piece must fit in the slot

occupied by the original. This reflects the need for interface compatibility, so that

existing references not be invalidated.

Inheritance is a language construct for expressing the sort of module manip-

ulation discussed above. A language that does not support such a construct is

clearly deficient in its support for module manipulation, violating the modifiability

criterion (4 above).

In practice, modular programming languages provide no notation to express

inheritance. Usually, there is no notation for manipulating modules at all. Even

languages that do support module manipulation (e.g., ML, Jade [58] ) are hampered

by lack of inheritance. Modification is achieved using an extra-linguistic tool,

a text editor. Again, all disadvantages noted earlier apply. Access to source

code is required. Recompilation is necessary. Multiple copies of modules are

introduced. No semantic constraints are enforced. Errors are easily introduced, and

the entire process entails more work than necessary. Another difficulty is that the

granularity of module constructs is often inappropriate. Often, the changes needed

are replacements of individual functions within a module, as the last example has

shown.

In summary, inheritance is a linguistic mechanism that supports actions that

occur naturally and frequently in modular systems. Its introduction into program-

ming languages is an extension of a natural progression of increasing support for

modularity in programming languages.
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2.3 Difficulties with Inheritance

In contrast to the interpretation of inheritance as a modularity mechanism given

above, the actual inheritance mechanisms available in current languages are in fact

in conflict with modularity. This section discusses the modularity problems that

arise in languages that incorporate inheritance. Snyder’s classic paper [65] showed

how inheritance commonly undermines modularity. Snyder’s observations are re-

called here, since they are central to this work. A modularity problem not discussed

in [65] is that certain program constructs cannot be effectively modularized. This

is addressed in section 2.3.5.

The next three subsections illustrate different manifestations of essentially the

same problem: exposure of a class’ use of inheritance to its clients. This violates

criterion 1 - encapsulation. Inheritance is used to construct modules; it is an

implementation mechanism. If it is visible to clients, then these clients may come

to rely on the inheritance structure used. If that structure is changed, clients may

cease to function correctly.

Subsection 2.3.4 discusses how inheritance may make visibility control unnec-

essarily complex, and constrain a client’s design. Finally, subsection 2.3.5 shows

how the absence of mixins makes most object-oriented languages incomplete with

respect to modularity.

2.3.1 Classes and Types

In many object-oriented languages, types are identified with classes and sub-

typing with inheritance.

The distinction between class and type is absolutely crucial. A class is a unit

of implementation (ideally, a modular unit). A type is a (partial) description of

behavior - a statically verifiable interface. The distinction is essentially that between

interface and implementation, and is well understood with respect to abstract data

types. A class always has a type associated with it, but not vice versa. A type can

be implemented by many different classes, as shown below.
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2.3.1.1 Multiple Implementations of an Abstraction

Identification of classes and types would seem to preclude supporting multiple

implementations of an interface within a single program. In practice, when multiple

implementations of an abstraction are required, the notion of abstract class is

often pressed into service as a substitute for interfaces. In this case, the abstract

class provides no definitions at all, only declarations. This is inescapable when a

language fails to distinguish between types and classes. A major disadvantage of

this technique is that it requires advance planning. where types and subtyping are

separated from classes and inheritance, this subterfuge is unnecessary.

2.3.1.2 Subtyping and Inheritance

If classes and types are identified, so, per force, are the subtyping and inheritance

hierarchies.

If a class A is defined by inheriting from classes B and C, then A is also

understood to be a subtype of B and of C. ¿From the viewpoint of modularity,

this is undesirable. Should the designer of class A later wish to reimplement A

using, say, D,E and F , the change would be visible to clients of A, because they

may rely on the subtyping relation previously defined. In effect, the ancestors of

A are part of its interface. By transitivity, the entire inheritance graph upstream

of A is part of A’s interface. Any change to this graph may affect the validity of

class usage downstream of the change. This is an unbounded region, since new

classes may be derived at any time. In practice, new classes are likely to defined at

remote sites, that should not even be aware of the existence of the base class being

changed. Consider an application based upon a framework supplied by a vendor.

If the vendor chooses to reimplement a class, the application may fail.

In reality, inheritance hierarchies are hard to design correctly the first time, and

need to be changed repeatedly. Changes in the hierarchy are difficult to make in

languages with classes as types, because of the problem outlined above.

In C++, inheritance may be decoupled from subtyping, by declaring access to a

base class to be private. However, this is of limited use, since the language provides
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no form of subtyping except that based on inheritance. If a class inherits without

becoming a subtype, instances of the class cannot be used polymorphically.

C++ classes are distinguishable from types, but not in a very clear cut way.

Membership in a type implies membership in a class,1 and so subtyping implies

subclassing. However, the converse is not always true, since an object of a subclass

of some class A might not be a member of a subtype of the type of A. The fact that

subtyping implies subclassing is valuable in an implementation, since it guarantees

a large measure of structural compatibility among the objects operated upon by

polymorphic code.

It is also possible to imagine a situation in which subclassing implied subtyping

but not vice versa. This policy, suggested in [30], does not violate encapsulation,

since information about the inheritance graph is not exposed through the type

system. Multiple implementations of an interface are also possible. Inheritance is,

however, restricted to create subtypes only. This limits the ways in which modules

can be manipulated. The literature contains many examples of cases in which

such restrictions are too harsh [7, 8, 18]. Current languages which unify types and

classes, either restrict expressiveness in this way (e.g, C++), or have unsound type

systems (e.g., Eiffel). In the case of unsound type systems, the problems may be

rectified by use of dynamic typing, as in Beta [48].

2.3.1.3 Other Considerations

The separation of classes and types makes it easier to define orthogonal con-

structs for renaming [3, pp. 168] and visibility control. There are other reasons for

separating classes and types. These have less to do with modularity. The interested

reader is referred to [7, 8, 18, 48].

It is worth noting that there are arguments for merging the concepts of type and

class. Programming languages have a long tradition of using type information for

implementation purposes. Identifying the type of an object with its implementation

1Except for primitive types such as int, float, etc.
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is a natural consequence of that tradition, and makes it easier to devise an efficient

language implementation.

Another longstanding tradition is that of name-based typing. Name based

typing is motivated by modeling considerations; modules that share a common

syntactic interface may represent semantically incompatible entities. Name-based,

as opposed to purely structural, typing, can help prevent confusion between such

modules. In the context of name-based typing, identifying classes with types seems

natural.

Nevertheless, the disadvantages of merging types and classes seem to outweigh

the advantages, especially as far as modularity is concerned.

2.3.2 The Diamond Problem

One of the delicate problems raised by the presence of multiple

inheritance is what happens when a class is an ancestor of another in

more than one way. If you allow multiple inheritance into the language,

then sooner or later someone is going to write a class D with two parents

B and C, each of which has a class A as a parent - or some other

situation in which D inherits twice (or more) from A. This situation is

called repeated inheritance and must be dealt with properly.

Bertrand Meyer.

In multiple inheritance, a class may inherit from an ancestor along multiple

paths in the inheritance graph. The simplest such situation is shown in Figure 2.4.

The situation shown raises thorny questions. Does a FillCircle object contain

one Ellipse subobject, or perhaps two (one for each path from Ellipse to FillCircle)?

Name collisions must result from this state of affairs. Are these regarded as errors

or not? If not, how are the conflicts resolved? Different languages treat these

problems in different ways. It is instructive to review the approach taken by most

major object-oriented languages.
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Figure 2.4. The “diamond” problem
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Many languages follow a policy that is intuitive, and seemingly innocuous. The

name clashes are harmless; the conflicting names all refer to the same method.

The compiler can distinguish between cases such as that shown in Figure 2.4, and

“real” name clashes, where the conflicting names arise from different definitions.

This solution relieves the programmer from the tedious task of resolving many of

the conflicts that arise in practice. This is the policy followed by Eiffel [51], Owl

[62], CLOS [35] and SELF [68, 69]. The reader may wish to ponder the obvious

common sense of this approach before continuing.

The only modular solution is to treat the name collisions as errors, just as if the

conflicting names had been defined in different classes. Similarly, each path in the

graph must contribute a subobject. To do otherwise requires global knowledge

of the inheritance graph. A class must not care about the provenance of the

implementation of a particular method it is inheriting. If this is not so, a change

in a remote ancestor can cause a class to break, as shown in Figure 2.5. Assume

the hierarchy is reorganized , so that all filling is derived from a common root class

FillGraphic. Fill classes must change, but not users of Fill classes. Since Ellipse and

FillGraphic are likely to have method names in common (e.g., draw), name clashes

will occur. Essentially, the problem is similar to that introduced by merging classes

and types: knowledge of the entire inheritance graph “leaks” into the interface.

2.3.3 Accessing Indirect Ancestors

It is often necessary to access code that has been overridden. In some languages,

the mechanism provided is to prefix the overridden method’s name by the name

of the class from which it was inherited. This is illustrated in Figure 2.6. Care

must be taken that such access is allowed only within the inheriting class, and that

only immediate ancestors may be referenced this way. Languages like Owl [62] that

allow arbitrary ancestors to be accessed this way, expose the use of inheritance

to clients. Consider Figure 2.7. FillCircle has a gratuitous dependency on the

implementation of FillEllipse. The programmer has assumed that the method for

computing the minor axis of the ellipse was inherited from Ellipse. If the inheritance
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Figure 2.5. “Opening” the diamond.

class FillEllipse is inherit Ellipse
draw = function() {

Ellipse::draw();
Fill();
...
}

end;

Figure 2.6. Accessing an overridden method.
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hierarchy is changed, FillCircle will either not compile, or worse, malfunction. Again,

the problem is that changing the inheritance hierarchy has the effect of breaking

downstream classes, as outlined in subsection 2.3.1.

2.3.4 Visibility control

In an object-oriented language, a class has two kinds of clients, users and heirs.

Users utilize classes in the same way as client modules in more traditional languages

use server modules, by invocation.

Heirs and users differ in the interface they require to the original class. Typically,

heirs require access to a “wider” interface than users, in order to implement modifi-

cations and extensions efficiently. If only one interface is provided, it may be either

too “narrow,” denying heirs the access needed for efficient implementation, or it

may be too “wide,” granting users unnecessary and potentially dangerous privileges.

Designers of object-oriented languages have found it necessary to introduce two

kinds of interface, corresponding to the two kinds of clients.

In C++, these interfaces are known as public (for users) and protected (for

heirs). In Owl, heirs have access to a subtype visible interface. Similar ideas

appear under the names of “internal” and “external” interfaces, in [53].

While these constructs do not strictly violate modularity, they seem overly

complex, and introduce a subtle anomaly, pointed out in [25]. Once certain features

of a class have been placed in the protected interface, those features can be

accessed only via inheritance. A nested instance of the class does not provide

access to that feature, since it is not in the public interface. This constrains the

designers of client software. The choice between inheritance and nesting is no longer

available to them. Modularity should guarantee the ability to associate multiple

interfaces with a module, not just two. Furthermore, the linguistic mechanisms for

using an interface should be orthogonal to what interfaces are available.
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2.3.5 Limits on Module Construction

Previous sections have shown how languages make it difficult to combine mod-

ules, or impossible to define modules. This section illustrates restrictions on the

way a module can be constructed.

Object-oriented languages originally supported single inheritance. The question

whether single inheritance is sufficient is still the topic of some controversy [14].

Proponents of single inheritance argue that multiple inheritance is complex and

poorly understood, that it is frequently abused, and that cases in which it is used

could be better handled by single inheritance. Conversely, supporters of multiple

inheritance argue that it is both natural and required. Arguments on both sides

are often anecdotal, and the debate sometimes suffers from confusion as to the

relationship between inheritance, subtyping and modularity.

The essential characteristic of single inheritance is that it is not possible to

combine several classes into one. Rather, one class may be modified to produce

another. This process may be iterated, producing a path of successively more

refined classes. Since a class may be modified in any number of different ways, this

leads to a tree structured inheritance hierarchy. Usually this hierarchy also serves as

a classification hierarchy. One common argument against single inheritance is that a

tree structured classification scheme is inadequate to model relationships in the real

world. However, the viewpoint advocated here is that inheritance is a modularity

mechanism, not a classification mechanism. While tree structured classification

is indeed limited, it is not a fundamental characteristic of single inheritance. If

inheritance is divorced from subtyping, a language can support single inheritance

simultaneously with overlapping (graph structured) classification. The fact that

subtyping does indeed induce a lattice structure was demonstrated in the classic

paper by Cardelli [9].2

There are, however, valid arguments against the restriction to single inheritance.

Viewed as a modularity mechanism, single inheritance seems very constraining. It

2The paper’s title, “A Semantics of Multiple Inheritance,” is a misnomer. It actually defines
subtyping, not inheritance. The distinction is not made clear in the paper.
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allows modification to a module, but does not allow for combination of modules.

Multiple inheritance can thus be viewed as an attempt to make object-oriented

languages more modular. Ironically, existing languages have tended to undermine

modularity when introducing multiple inheritance.

A clear limitation on modularity in all existing object-oriented languages with

static types is the existence of an entire class of software definitions that cannot

be modularized at all. These definitions are known as mixins. Consider Figure

2.8. This example is very similar to that given in Figure 2.6. The only difference

is that Ellipse has been replaced by Rectangle. In most object-oriented languages,

and certainly in all those that employ static typing, there is no way to factor out

the commonality evident in the example into a separate abstraction, let alone a

separately compilable module. An important contribution of this chapter is the

identification of mixins as candidates for programming language support. Their

absence is a violation of modularity in a language supporting inheritance.

2.4 Problems by Language

This chapter has surveyed the serious modularity problems that exist in today’s

programming languages. To facilitate understanding, the presentation has been

organized by problem, not by language. In order to convince the reader that

there is no programming language that does not suffer from some of the problems

discussed above, the relevant properties of most important programming languages

are summarized in Table 2.1.

The languages listed include both the major languages in use today, and lan-

guages that are important for their innovative constructs, even if they are not widely

used.

Each row in a table corresponds to one of the problems cited earlier in this chap-

ter, and each column corresponds to a particular programming language. An entry

marked “X” signifies that the language in question suffers from the corresponding

problem. A blank entry means either that the problem is handled correctly, or that

the issue does not arise - for example, the diamond problem of subsection 2.3.2
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class FillCircle is inherit FillEllipse
radius = function() {

return Ellipse::minor axis();
// Should have used FillEllipse::minor axis !
}

...
end;

Figure 2.7. Accessing indirect ancestors violates encapsulation.

Table 2.1. Problems by language

Language Ada Beta C++ CLOS CLU CommonObjects
Problem
Global Name Space X X X
Class = Type X X
Diamond problem X
Remote ancestor access
No Inheritance X X
Single Inheritance X
No Static Typing X X
No Mixins X X X

Table 2.1. - Continued

Language Eiffel Haskell Jade ML Modula-2
Problem
Global Name Space X X X
Class = Type X
Diamond problem X
Remote ancestor access
No Inheritance X X X X
Single Inheritance
No Static Typing
No Mixins X

Table 2.1. - Continued

Language Modula-3 Oberon Owl Self POOL Smalltalk
Problem
Global Name Space X X X X X
Class = Type X
Diamond problem X X
Remote ancestor access X
No Inheritance X
Single Inheritance X X
No Static Typing X X
No Mixins X X X X
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does not arise in languages with only single inheritance, and the absence of mixins

is not a deficiency in languages that do not support inheritance at all.

One of the things Table 2.1 makes clear is that there is no language supporting

inheritance that combines static typing with the ability to express mixins. The

following chapter studies mixins in detail, and shows how they may be used to

address some of the problems this chapter has raised.

class FillRectangle is inherit Rectangle
draw = function() {

Rectangle::draw();
Fill();

}
...
end;

Figure 2.8. Lack of mixins causes repetitive code.



CHAPTER 3

MIXINS

It was not obvious how to combine the C++ strong static type
checking with a scheme flexible enough to support directly the “mixin”
style of programming used in some LISP dialects. The C++ Annotated
Reference Manual.

As mentioned in Chapter 2, mixins can be used as the basis of a powerful form

of inheritance, mixin-based inheritance [6]. Now is the time to investigate mixins

more thoroughly. This chapter examines different ways in which mixins can be in-

corporated as full-fledged constructs in programming languages, and demonstrates

the usefulness of such an endeavor. A more theoretical treatment of mixins is left

for section 5.2.

The chapter begins with a review of the informal use of mixins in current

programming languages. Next, the nature of mixins as abstractions is discussed.

Appropriate linguistic formulations of mixins and mixin-based inheritance are then

presented. In conclusion, the limitations of mixin-based inheritance are reviewed.

This in turn, sets the stage for a more comprehensive approach to inheritance and

its problems, in the next chapter.

3.1 Mixins in Existing Languages

The previous chapter introduced the notion of mixin, a construct that seems

to be missing in existing object-oriented programming languages. In fact, mixins,

as an informal construct, are present in several dynamically typed object-oriented

programming languages. This is analogous to the use of while loops in FORTRAN

programs - the construct is in use, but the language does not support it.
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3.1.1 CLOS

The use of the word mixin as a technical term originates with the LISP com-

munity. It was first used by the developers of the Flavors [54] language. In CLOS,

mixins are available as a result of two factors: dynamic typing and the notion of

linearization.

In CLOS, all classes that contribute to an object’s behavior are ordered linearly

in a class precedence list. The ordering is determined by a linearization algorithm.

Various algorithms may be used [22], but they all produce a linear ordering that

preserves the partial ordering inherent in the original graph. Each contributing

class occurs only once in the resulting precedence list. Linearization serves to

disambiguate name clashes in multiple inheritance, but has serious negative con-

sequences. Encapsulation is violated, as discussed in section 2.3.2. In addition, a

class may not be adjacent to its immediate ancestors in the class precedence list

produced. This may affect program behavior, and is heavily dependent on the

specific linearization algorithm used, and on the global structure of the inheritance

graph.

Classes in CLOS may refer to their ancestors using a special function, call-next-

method. This allows access to overridden methods, as mentioned in section 2.3.3.

When executing a method, an invocation of call-next-method will invoke the method

of the same name, as defined on the next class on the class precedence list.

Given the absence of static checking, it is possible to place an invocation of

call-next-method in a class that does not have any ancestors. Of course, the in-

vocation will fail if the class is used by itself. The designer of a mixin relies on

the linearization algorithm to place the mixin before other classes in the class

precedence list to achieve the effect of binding a mixin to a parent. Thus, mixins

are expressible in CLOS as a by-product of the procedural model of inheritance

used by the language. Mixins are not expressed as explicit abstractions, nor do

they have any formal language support. CLOS is representative of the approach

taken by a variety of LISP dialects with respect to inheritance. The main exception
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is CommonObjects [63, 65], which is discussed in Chapter 8 in the context of related

work.

3.1.2 SELF

SELF, like CLOS, is dynamically typed. Unlike CLOS, it is not based upon a

linear form of inheritance, but rather upon delegation [1, 5, 41, 66]. Delegation is

a form of inheritance that occurs between objects (often referred to as prototypes)

at execution time, rather than between classes at the time of compilation.

Like CLOS, SELF has a built-in mechanism for accessing overridden methods

(known as resend). Since no static typechecking is performed, it is possible to

define objects which use resend without binding them to parents. Using delegation

these objects can be bound to a parent object later in the program execution. It is

the programmer’s responsibility to ensure that such a mixin object is bound to a

parent before being used.

Since objects are first-class values that may be abstracted over, it is also easy

to write a method that takes an object as an argument and uses it as a parent for

another object. This method insures that binding to a parent takes place. However,

in SELF this assurance is of limited value, because there is still no guarantee that

the parent will support the interface expected of it.

SELF’s approach is much more satisfactory than the one taken by CLOS, since

mixins are available as a natural consequence of delegation, rather than as an

artifact of undesirable linearization.

3.1.3 Beta

Beta uses a form of single inheritance called prefixing. When a class (known as

the prefix) is modified through prefixing, the language guarantees that the prefix’s

original code will be executed. The prefix determines if, and at what point in the

code, the modification’s (extension in Beta parlance) code will be invoked. This is

indicated by the keyword inner.
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Beta uses the concept of pattern uniformly for classes, types, functions and pro-

cedures. Beta’s syntax can be disconcerting for novices, so here a more conventional

notation is used.1

Figure 3.1 is an example demonstrating how prefixing works in Beta. Two

classes, Graduate and Person, are defined. The definition of Graduate is said to be

prefixed by Person. Person is the superpattern of Graduate, which, correspondingly,

is a subpattern of Person. Display is declared to be virtual, which means that it

may be extended in a subpattern. This does not mean that it may be arbitrarily

redefined, as in most object-oriented languages.

The behavior of the display method of a Person is to display the name field and

then perform the inner statement. For a plain Person instance, which has no inner

behavior, the inner statement is a null operation (i.e., skip or no-op). When a

subpattern of Person is defined, the inner statement will execute the corresponding

display method in the subpattern.

The subpattern Graduate extends the behavior of the Person display method by

supplying inner behavior. For a Graduate instance G, the initial effect of G.display

is the same as for a Person: the original method from Person is executed. After the

name is displayed, the inner procedure supplied by Graduate is executed to display

1This syntax is used by the implementors of Beta for tutorial purposes [39].

Person: class (#
name : string;
display: virtual proc
(# do name.display; inner #);

#);

Graduate: class Person (#
degree: string;
display: extended proc
(# do degree.display; inner #);

#);

Figure 3.1. Beta prefixing
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the graduate’s degree. The use of inner within Graduate is again interpreted as

a no-op. It only has an effect if the display method is extended by a subpattern

of Graduate. Notice how in Beta prefixing, the prefix controls the behavior of the

result.

Figure 3.2 shows how a mixin can be defined in Beta. The objective is to capture

the “graduate behavior” embedded in the subpattern (# degree: ...; display: ... #)

in an abstraction, so it need not be repeated time and again. The mixin is called

GraduateMixin, and is defined in a rather involved way. GraduateMixin comprises two

nested classes, Super and Result. GraduateMixin should be thought of as a function

from classes to classes. Super represents the function’s formal parameter, its input.

Result represents the function’s output. Super must be a subclass of Displayable.

Displayable is an abstract class whose purpose is to serve as an interface specification,

Displayable: class (# display: virtual proc (# inner #) #);

Person: class Displayable (#
name: @String;
display : extended proc (# do name.display; inner #)

#);

GraduateMixin: (#
Super : virtual class Displayable; (* Formal Parameter *)
Result: class Super (#

degree: @String ;
display : extended proc
(# do

degree.display
#)

#) (* Desired Combination *)
#)

GraduatePattern: class GraduateMixin (# Super : extended class Person #);
(* Pass ”Person” as actual parameter *)

Graduate: class GraduatePattern.Result (* Extract Final Result *)

Figure 3.2. Mixins in Beta
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or “type,” for Super. This kind of use of abstract classes is always necessary when

types and classes are not clearly distinguished, and was discussed in section 1.1.2.

What the GraduateMixin “function” computes is a new class, Result, which

extends the input parameter Super with “graduate” information. The “invocation”

of GraduateMixin proceeds in two stages. First, an extension GraduatePattern is

defined. The extension refines the class Super to be class Person. This is the analog

of passing Person in as an actual parameter. Person is a subclass of Displayable, so

it is a valid argument. The second stage is to explicitly retrieve the “output.” This

is done by selecting Result from GraduatePattern.

The solution takes advantage of Beta’s unusual ability to nest classes in an

arbitrary fashion, and redefine nested classes via inheritance. The approach taken

here is closely related to Beta’s use of nested patterns to represent genericity or

procedures as parameters [49].

Support for mixins in Beta is not deliberate, however; until an early version of

this work was circulated, no one, including Beta’s designers, had investigated use

of mixins in Beta [47]. This explains why it is rather awkward to define a mixin in

Beta.

The idea that mixins can be treated as functions from classes to classes is

valuable. In the next section this idea will be made readily apparent, free of Beta’s

somewhat idiosyncratic syntactic and conceptual baggage.

3.2 Mixins as Abstractions

Tennent’s principle of abstraction [67, page 114] states that “any semantically

meaningful syntactic class...can in principle be used as the body of a form of

abstract.” The introduction of mixins into object-oriented languages is a direct

application of this principle. Since a mixin is not inextricably bound to any

particular parent, we can regard a mixin as being parameterized by a parent, which

it is modifying. So mixins can be treated as functions from classes to classes.2 This

2In fact, that is one of several semantic views of mixins, and not exactly the one originally
developed in [6]. See section 5.2 for more details.
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is shown in Figure 3.3. The BorderWindow function accepts an argument W, which

must be a Window, and returns a result that is a modified version of the input

class W. The modification adds a border, to be displayed around the window. This

requires a new display routine, which first displays the window’s body, and then

surrounds it with a border.

The notation W : Window requires some discussion. This syntax is clearly

analogous to standard programming language notations like i : Integer, which signify

that i is a variable denoting a value belonging to a collection of values known as

Integer. Similarly, W denotes a class that belongs to the collection of classes known

as Window. Such collections of classes will be referred to as interfaces. The intuition

is that W must be a class that supports the interface specified by Window.

Existing object-oriented languages do not have a formal notion of interface.

However, many have a notion of type (which may be distinct from the notion of

class, but usually is not.). In that case, an alternative notation, W <: Window,

can be used. This can be interpreted as stating that W is a class whose instances

have type Window (or some subtype of Window). The most common situation is

that classes and types are identified (as discussed in Chapter 2). The reading of

W <: Window then reduces to “W is a subclass of Window.”

A corollary of the view of mixins as functions from classes to classes is that

if classes and inheritance are first class operations, mixins fall out automatically.

That is essentially what happens in SELF, where objects and delegation are first

class, as noted in section 3.1.2.

BorderWindow[W : Window] = inherit W
borderWidth = 5; borderColor = red;
display = function(dontCare: Unit)
{

W.display();
displayBorder();
}

displayBorder = function(dontCare: Unit) { ... }

Figure 3.3. Generics as mixins
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Making inheritance a runtime operation may not be desirable. One consid-

eration is that a high performance implementation becomes much more difficult.

Another complication is that static typechecking of such constructs is problematic

to say the least. This last problem will be discussed shortly. However, it is also

possible to define abstractions over classes without taking the radical step of making

inheritance a first class (runtime) operation. Such abstractions are the topic of the

next subsection.

3.2.1 Mixins and Type Abstraction

Many programming languages support abstractions over “second-class” entities,

such as types, classes or modules [43, 21, 62, 51, 55, 23, 26]. These constructs

are often referred to as generics. In some languages, generics are merely macros,

separately expanded and recompiled for every application of the abstraction. This

is the case in Ada, Modula-3 and C++. Such constructs are easily incorporated

into almost any language. However, they preclude separate compilation of the

abstraction they represent, and are nothing more than syntactic devices, with no

semantic content.

More significant are constructs such as Owl type modules and ML functors,

which are compiled only once. In object-oriented languages, generics have been

used to define container classes, such as stacks or linked lists, that are conveniently

parameterized by the type (or class) of objects they contain. It appears that one

could easily use such a construct to express example 3.3. Still, existing languages

preclude such usage.

The reason is that guaranteeing the type-correctness of such an abstraction is

in general extraordinarily difficult. Figure 3.4 illustrates the problem. A mixin M

P = A inherit x: Bool → Bool = ...; ... end;
M[B <: A] = B inherit x: Real to Real = ...; ... end;
C = M[P];

Figure 3.4. Mixin application
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is defined that adds a boolean-valued method x to its argument. M is then applied

to class P. P meets the requirements in the abstraction’s header: P <: A. However,

C is a malformed class because the x attribute of P conflicts with the x attribute

added on by the abstraction. Note that if the type of the actual parameter (P in this

case) was known exactly then this problem could not arise. However, a typical mixin

is not useful unless it can be applied to classes with various interfaces. In other

words, useful mixins are polymorphic; they are meaningfully applied to arguments

of different (though related via subtyping) types. The difficulty is that while useful

mixins are polymorphic, it appears that without exact type information, one cannot

guarantee the type safety of inheritance.

Various typing schemes have been developed in an attempt to address this prob-

lem [12, 27].3 None seems to present a solution that is simple and understandable

enough to be useable by programmers, efficiently implementable, and covers the

important cases. The problem is an exceedingly difficult one, and remains the

subject of intense research. Related typing problems will arise repeatedly in this

dissertation.

Rather than attempt (or wait for) a general solution, an alternative is to restrict

the problem. While the ability to inherit within a polymorphic abstraction is

sufficient to define typed mixins, it is not necessary. Defining dedicated constructs

for expressing mixins is a pragmatic alternative, discussed next.

3.2.2 A Dedicated Construct for Mixins

Mixins, expressed as abstractions, have a common form, as indicated in Figure

3.5. A mixin’s signature contains sufficient information to determine the type

3Typically, what is actually studied is polymorphic record concatenation, but the problems are
essentially the same.

aMixin[T <: S] = T inherit some modifications

Figure 3.5. The common form of mixins.
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correctness of an application (assuming exact type information about the actual

parameter is available). The key is to recognize the characteristic form of a mixin’s

signature, especially its range.

First, some notation must be introduced. The leftward arrow ← is the override

operation on interfaces. If R,S are interfaces, R override S is the interface that

results when R and S are concatenated, with the proviso that, if any attribute

names are defined in both R and S, then

• the attribute value from S is used in the result.

• the type of the S attribute value must be a subtype of the type of the R

attribute value.

The notation forall T <: S. type-expr means that within the type expression

type-expr, T is a bound variable that denotes a type that is guaranteed to be a

subtype of S. The types in question should be interpreted as the interfaces associated

with classes.

Figure 3.6 shows that the actual result type of the mixin depends on the type of

its actual argument. The mixin aMixin can be thought of as a polymorphic function

between classes. For all classes with interface T, where T is a subinterface of S,

aMixin takes a class and produces a new one, whose interface is given by (T← . . .).

At the point of application, the result type will be malformed if the argument

is inappropriate. One can then detect statically any maltyped mixin applications.

As long as inheritance manifests itself in the abstraction’s signature, type safety

can be guaranteed.

It is therefore imperative to ensure that every use of inheritance inside an

abstraction is indeed reflected in its signature, and thus propagated to the top

level, where exact type information is available. The easiest solution is to define a

aMixin: forall T <: S. T → (T ← . . .)

Figure 3.6. The signature of a mixin.
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dedicated construct, as in Figure 3.7. A mixin abstraction of this form could be

invoked with an actual parameter just like an ordinary generic. The meaning of the

invocation is defined as M[R] = R inherit body. The crucial restriction is that the

formal parameter R may not be inherited from, directly or indirectly in body. The

invocation is legal as long as R <: S and the result type of the mixin invocation

(which depends on R) is well-formed. This handles many interesting cases, and

guarantees type safety.

3.2.3 Mixin-based inheritance

The use of mixins naturally introduces a new form of multiple inheritance,

mixin-based inheritance. Mixin-based inheritance subsumes other forms of linear

multiple inheritance, typical of LISP based object-oriented languages. If formulated

with care, mixin based inheritance is a truly modular form of inheritance.

Figure 3.8 shows a simple multiple inheritance hierarchy. This hierarchy can

M = mixin[T <: S] body end

Figure 3.7. A dedicated mixin construct.
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be linearized in two different ways, as illustrated in Figure 3.9. Both linearizations

can be defined using mixins. The first corresponds to C[B[A[Base]]], where Base is

a simple base class with no attributes. The second linearization is likewise repre-

sentable by C[A[B[Base]]]. In general, any linear encoding of a multiple inheritance

hierarchy can be represented by a series of nested mixin invocations, as long as all

classes (except Base) are represented as mixins.

Note that modularity need not be violated here. No implicit linearization

is performed. The linear order is determined explicitly by the programmer. If

the other precepts of [65] are followed, this form of inheritance does not violate

encapsulation.

The formulation described up until now provides essentially the same level of

functionality provided in [28]. Further refinements are developed below.

The next logical step is to define combinations of classes as mixins, so that when

the new combination is used, the same flexibility is available. Instead of writing

C[B[A[Base]]], define mixin CBA[X] C[B[A[X]]] end. This raises a problem. The

argument X is being inherited from, within the body of the abstraction, contrary to

the restriction given above. Fortunately, the restriction can be eased in this case,

since the use of inheritance is reflected in the signature of the mixin CBA.

Prior to instantiation, mixins must be bound to a parent, as in new CBA[Base].

The type system will be able to determine if Base is a valid parameter for the mixin

being instantiated. If not, the mixin is not ready for instantiation, since it still

makes nontrivial use of its parameter.

3.2.4 Mixin Composition

Mixins like CBA are more concisely formulated via mixin composition. In this

context, mixin composition is exactly function composition. Define

(M1 ◦M2)[M3] = M1[M2[M3]].

Then CBA = C ◦ B ◦ A.

The style of programming that emerges from the examples above is one in which

all user-defined classes are defined either as mixins or mixin compositions. This
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leads to the idea that only one construct, the mixin, is really needed by users, and

that mixin composition is the normal mode of combining these constructs. This

design is explored next.

3.3 Elevating Classes to Mixins

Instead of representing mixins with a new construct, an existing construct, the

class, can be generalized. In some cases, this approach is more natural. For example,

in Beta, the entire language is centered around a single abstraction, the pattern.

Adding a new, special-purpose construct solely for mixins would not fit in such a

framework at all.

The main attraction of this approach is uniformity. The language retains a single

abstraction, the class, for module definition. All classes are considered to be mixins,

and are always combined by means of the composition operator. Ordinary classes

need not declare a formal parameter. Nonetheless, they are viewed as shorthand for

degenerate mixins that do not make use of their parent parameter. Mixins thereby

generalize Smalltalk classes, Beta patterns and CLOS style mixins. A mixin is

complete if it does not refer to its parent parameter, and defines all fields that it

refers to in itself. Otherwise, it is partial. Only complete mixins may be instantiated

meaningfully. This can easily be enforced by the type system. This approach was

first presented in [6].

The advantages of uniformity are:

• It makes the language simpler.

• As shown above, this simplifies the expression of useful classes.

• It allows inheritance to viewed as an operator over a uniform space of values

(mixins). This represents a radical shift in thinking about inheritance. In-

stead of viewing inheritance operationally in terms of graphs and algorithms

for traversing them, inheritance is thought of in a declarative way. These

observations will be exploited in the next chapter, to develop a more compre-

hensive yet simpler solution.
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3.3.1 Extending Existing Languages

Mixin-based inheritance can be incorporated in a natural way into programming

languages that employ a linear inheritance scheme. These include single inheritance

languages such as Beta, Smalltalk or Modula-3 [6]. It also includes languages such

as CLOS, which use linear multiple inheritance. CLOS is a particularly attrac-

tive candidate for experimentation, because it incorporates a meta-object protocol

(MOP)[37] that was specifically designed to allow for easy language modification.

In fact, a CLOS implementation of mixin-based inheritance was seriously considered

as part of this work. It was rejected because a compiler that actually implemented

the MOP was not available.

3.4 Limitations

While mixin-based inheritance offers significant improvement over other linear

inheritance schemes (both single inheritance and linearized multiple inheritance), it

still inherits the fundamental limitations of the linear approach. There is only one

way to resolve name conflicts - placing the mixins with the conflicting attributes in

a certain order. This leads to three main problems:

1. There is no allowance for selectively choosing attributes from various mixins.

2. No means is provided for resolving incidental name conflicts.

3. No warning is given about conflicts - they are resolved automatically.

There are various other refinements missing from the presentation so far. No-

tions of information hiding have not been discussed. The ability to distinguish

between static and dynamic binding of methods is absent. One could elaborate the

mixin construct to support these last two, with a corresponding loss of simplicity.

Rather than extending the concept of mixin, it will be advantageous to simplify

it. I have chosen to focus on the idea that inheritance is an operation over a uniform

space of values, as discussed in section 3.3. This idea lends itself to a clean extension

that deals with all of the problems mentioned here. The next chapter explores that

approach, which is at the heart of this dissertation.



CHAPTER 4

JIGSAW

1. jig.saw n : a machine saw with a narrow vertically reciprocating
blade for cutting curved and irregular lines or ornamental patterns in
openwork 2. jigsaw vt 1: to cut or form by or as if by a jigsaw 2: to
arrange or place in an intricate or interlocking way
Unix Webster online dictionary.

This chapter argues that inheritance, properly formulated, is a powerful modu-

larity mechanism that can constitute the basis of a module manipulation language.

The formulation of inheritance presented herein is derived by observing that in

languages supporting multiple inheritance (e.g., [23, 51, 62]), classes are burdened

with too many roles. The class construct is “large” and monolithic. Here classes

are simplified, and their functionality is partitioned among separate operators.

Classes are reduced to a simple notion of module - a mutually recursive scope.

These modules form a uniform space of values upon which operators act. The

operators accept modules as arguments, and produce modules as results. The

notion of module with its associated operations can thus be viewed as an abstract

datatype.

The set of operators presented supports encapsulation, multiple inheritance,

mixins and strong typing in a single, cohesive language. These features have not

been successfully combined before.

Apart from the obvious relevance to object-oriented programming languages, the

Jigsaw framework can be used to introduce modularity into a variety of languages,

regardless of whether they support first class objects.

The approach is itself modular. Language designers can use this approach,

and add, remove or replace operators. This makes the benefits of extensibility and
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modifiability associated with object-oriented programming available at the language

design level.

These points are demonstrated via the module manipulation language Jigsaw.

For concreteness, assume that Jigsaw manipulates modules written in an applica-

tive language with a type system based upon bounded universal quantification

[13]. However, the discussion remains virtually unchanged if modules are written

in another language. For instance, although a subtype relation is assumed, its

particulars are not relied upon. Hence the approach applies to languages without

subtyping as well. These have type equivalence as a degenerate subtyping relation.

The remainder of the chapter is structured as follows. Section 4.1 discusses

the many roles played by classes in object oriented languages. Section 4.2 then

demonstrates how each of these roles is supported by Jigsaw’s operators. Jigsaw

allows arbitrary nesting of modules, and this is the subject of section 4.3. A Jigsaw

interpreter is sketched in section 4.4. This is followed by section 4.5, which shows

how Jigsaw can be applied to a variety of languages, and why Jigsaw can justifiably

be considered a framework in the sense used in the object-oriented programming

community, as mentioned in Chapter 1.

4.1 Roles of a Class

In a language supporting multiple inheritance, the class construct typically

supports a large subset of the following functions:

1. Defining a module.

2. Constructing instances of a module definition.

3. Combining several classes together. This is characteristic of multiple inheri-

tance.

4. Modifying a class. This function is characteristic of all inheritance systems,

single or multiple.

5. Resolving name conflicts among class attributes. This can be done in various

ways, by renaming or by explicitly specifying the desired attribute.
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6. Defining sharing constraints among classes. When classes are combined, cer-

tain attributes or groups of attributes may exist in several of the classes being

combined. The question is whether these attributes should be duplicated for

each participant class, or shared. Too often, the language designer has decided

on a particular answer. In fact, different applications have different needs in

this respect, and programmers should be able to make the choice.

7. Restricting modifiability. Usually, all visible attributes of a module are sub-

ject to modification. It is sometimes desirable to restrict this flexibility, and

state that a certain attribute may not be modified by inheritance. This is

useful both from a design point of view, and also for optimization.

8. Determining attribute visibility. Different mechanisms may be available, to

determine visibility to users, heirs or “friends.”

9. Accessing overridden attributes. It is common that a method in a modified

class makes use, during computation, of the method it has overridden, using

special notation.

In addition, if the language is strongly typed, one often finds that a class fulfills

additional roles:

10. Defining a type.

11. Defining a subtyping relation.

Jigsaw separates inheritance from subtyping to preserve encapsulation, as dis-

cussed in Chapter 2.

The following section presents Jigsaw’s operator suite. The roles detailed above

are examined in turn, and, for each role, the relevant operator(s) described.

4.2 The Jigsaw Operator Suite

4.2.1 Module Definition

The primary definitional construct in Jigsaw is the module. A module is a

self-referential scope, binding names to values. A binding of name to a value is a
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definition. Unlike ML [44], modules do not bind names to types. Type abbrevia-

tions may be used, as syntactic sugar.1 Typing in Jigsaw is purely structural.

Modules may include not only definitions, but declarations. A declaration gives

the type of an attribute, but no value for it. Declarations are used to define

“abstract classes.” Modules may be nested. Every module has an associated

interface, which gives the types (or interfaces, for nested modules) of all visible

attributes of a module. The subtyping relation on interfaces is defined as interface

equivalence. Two interfaces are equivalent if they have exactly the same attribute

names, and the attributes have equivalent types or interfaces.

Modules have no free variables, and module operators do not require access to

the source code of their operands. This allows for separate compilation, including

inheriting from separately compiled modules.

4.2.2 Instantiation

A module M is instantiated by the expression instantiate M. The result of this

expression is known as an object or instance. The module in Figure 4.1 is similar

to the class shown in Figure 2.2, and can be instantiated into a point object with

coordinates at the origin.

In an applicative language, all instantiations of a module are identical. Then

why distinguish between a module and its instance? The main reason is typing. It

is extremely desirable to use instances polymorphically. On the other hand, module

operations require exact knowledge of the type of their operands. Distinguishing

modules from instances allows separate type rules to be given for each.

An alternative would be to introduce a new judgement into the type system,

indicating that a value is exactly of some type, in addition to the ordinary judgement

that a value has some type. This solution is more verbose. Also, the solution chosen

here is more natural, since modules do denote a different kind of value than objects.

This will be discussed in Chapter 5.

1In ML terms, only type declarations, not datatype declarations, are supported.
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Another reason for keeping modules and instances distinct is that the decision to

make module instances first class values (as in “Class-based” languages [72]) need

not imply that modules themselves are first class values. If modules are identified

with instances, the two decisions cannot be separated. The use of Jigsaw should not

constrain language designers in this way. Subsection 4.5 discusses a language design

where neither modules nor instances are values; Chapter 6 refers to a language

where instances are values, but modules are not; in Jigsaw, both modules and their

instances are first class values (the fourth option, making modules values while

instances are not, is self-contradictory).

Of course, imperative languages based on Jigsaw are of great practical interest.

In this case, the distinction between modules and objects is essential. Some impera-

tive object-oriented languages provide constructors or destructors for initializing or

eliminating objects. Jigsaw does not support such constructs. Instead, modules are

expected to incorporate an initialization method that can be invoked immediately

after instantiation. This solution is also advocated in Modula-3.

4.2.3 Combining Modules

Two modules may be combined using the merge operation. The result is a

new module, in which all names declared in either of the inputs are declared.

Name conflicts are not permitted, and result in a static error. Note that the

merge operator does not provide any mechanism for resolving such conflicts. Other

operators are used for this purpose. This is one example of how definitions are

simplified in this approach.

Merge is commutative and associative. The merge operator is discussed

further in the context of sharing (subsection 4.2.6).

4.2.4 Modification

One module may be modified by another. This is an asymmetric operation, in

which one module overrides the other. This is supported by the override operation:

M1 override M2. The override operator takes two modules and combines them.
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If an attribute is defined by both modules, then the type of the attribute in M2

must be a subtype of its type in M1. In that case, the value from M2 will appear

in the result.

Override is associative and idempotent, but not commutative.

4.2.5 Name Conflict Resolution

Name conflicts can be resolved in several ways. One can explicitly choose one

of the conflicting attributes in preference to all others. This eliminates the conflict,

but requires that all modules share a common version of the attribute. This may

not always be desired. Furthermore, the types of the conflicting attributes may be

incompatible, in which case such sharing is impossible. Sharing is discussed in the

following subsection.

An alternative is to eliminate the conflict by renaming. This is always possible,

and all attributes remain available. The one drawback is that in a structure-based

type system, attribute names are meaningful for subtyping, and renaming may

adversely affect polymorphism.

The renaming operator changes the name of a single attribute:

M rename a to b

The effect is equivalent to a textual replacement of all occurrences of the attribute

name a in M, by the name b. Attribute a must be declared by M, and b neither

declared nor defined.

The type rule for rename must ensure that the attribute is renamed in the type

of the result.

It is worth pointing out that a dedicated renaming operator is more than just

a convenience. A naive interpretation of renaming would lead one to the idea that

to rename a to b, it suffices to add a b method that invokes a, and then hide a.

This is a valid way to define renaming for records. However, when inheritance is

involved, this solution is not equivalent to textual substitution. When a modified

version of b is introduced, the expectation is that all internal references will invoke
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the new b method. Since many of these references actually refer to the old name,

a, they will not invoke the revised method. This behavior is different from what

would have occurred had renaming not taken place. The desired property is that

rename distributes over override, and is illustrated in Figure 4.2.

4.2.6 Sharing

When modules are merged in Jigsaw, multiple definitions of an attribute give

rise to errors. In contrast, multiple declarations of an attribute are shared, and are

perfectly legal.

Of course, this is only valid as long as the declaration agrees with the definition.

The definition must have a type that is a subtype of the declaration. Similarly, two

declarations may clash, as long as they have a subtype in common. Existing object-

oriented languages that recognize the notion of “pure virtual” do not make this

distinction, and treat identically all name clashes between classes being combined.

In contrast, in Jigsaw, declarations can help specify sharing constraints among

modules being combined, at the granularity of attributes.

Sharing is facilitated by the restrict operator. The effect of a restrict operation

is to eliminate the definition of an attribute, but retain its declaration. Unlike

records, it is not generally possible to completely remove an attribute from a mod-

ule, because the module may contain internal references to the attribute. Restrict

creates an abstract class, by making an attribute “pure virtual.” Therefore, abstract

classes may be created “after the fact.” The attribute being restricted must be

defined by the argument module. The restrict operation is associative.

When several modules are combined via merge, sharing of conflicting attributes

may be specified by restricting all but one. This supports conflict resolution via

explicit specification, a feature that was missing in mixin-based inheritance.

Project is a dual of restrict. Rather than specifying which attribute to remove,

project specifies which attributes to retain. A module, M, and a list of attributes,

A, are the inputs to the project operation. Project requires that all names in A

be defined by M.
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4.2.7 Restricting Modifications

The freeze operator accepts an attribute name, a, and a module as parameters,

and produces a new module in which all references to a are statically bound.

Some languages support this using the notion of nonvirtual attributes (static

binding). However, this does not allow for changing the status of a virtual attribute

to nonvirtual (e.g., as in Beta [38]). In addition, it complicates the model, since not

all methods are defined in the same way - there are two kinds, declared differently.

In the Jigsaw model, it is preferable to have only virtual attributes declared, and

perform the change by means of an operator on modules. The attribute being

frozen must be defined.

Freeze has a dual operation, freeze all except M A, that freezes all features

of a module M, except those specified in the list A. The attributes listed in A must

be defined by M.

4.2.8 Attribute Visibility

Visibility control is implemented by means of the operations hide and show.

M hide a eliminates a from the interface of M. The attribute a must be defined by

M.

Conversely, M show A hides everything except the specified attributes. All

attributes listed in A must be defined by M.
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4.2.9 Access to Overridden Definitions

Access to overridden definitions is supported through the use of the copy-as

operator. M copy a as b creates a copy of the a method, under the name b. The

a method can now be overridden, while the old implementation remains available

under the name b. M must not declare an attribute b, but must define a.

Consider Figure 4.3, which also demonstrates how Jigsaw emulates mixins.

Recall that the intent here is that the BorderMixin module modifies the Window

module by adding a border, to be displayed around the window. The new display

routine first displays the window’s body, and then surrounds it with a border.

BorderMixin declares an unimplemented routine displayBody, which is invoked within

the display routine. Before overriding Window with BorderMixin, Window’s display

routine is copied as displayBody.

Note that renaming display to displayBody in Window would be inappropriate.

When display was modified by BorderMixin, references to display within Window

would not be modified. Defining a displayBody routine that called display and

adding that to Window would yield an infinite recursion once the modification by

BorderMixin was performed.

Another point is that BorderMixin is not technically a mixin, in the sense defined

in Chapter 3. BorderMixin is not a function on classes or modules, but an ordinary

module (albeit an abstract class). However, it fulfills the same purpose as a mixin,

since it is a modification that stands on its own, and can reference functionality it

overrides. This is done without recourse to more elaborate structure. Instead, the

functionality is delivered using additional operators.

4.3 Nesting Modules

The ability to nest modules within one another was mentioned in Chapter 2

as an important requirement for modularity (criterion 3). Nesting addresses the

global name space problem. The former global space is a module. It can be

extended, modified, renamed, etc. Renaming means name conflicts are never an
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issue. Modules developed at remote sites are in their separate “global” modules.

These can be merged, and conflicts resolved by sharing, hiding and renaming.

Consequently, class libraries are simply modules, with ordinary classes as nested

modules. In particular, note that frameworks (as defined in Chapter 1) are class

libraries designed to be extended with additional classes, many of which extend the

classes defined within the framework. So the process of completing a framework

can be viewed as extension of a module containing nested modules.

In principle, nested modules have many additional applications, including mod-

ifying entire class hierarchies via inheritance and use as “factories” that produce

instances of nested modules while serving as shared data repositories for all these

instances. Unfortunately, the limited nature of subtyping on modules restricts these

solutions. Chapter 8 includes an overview of the exciting possibilities mentioned

here, and what steps might be taken to support them. The only language that

currently supports unrestricted class nesting is Beta. Again, Chapter 8 discusses

class nesting in Beta.

Given nested modules, running a program is simply instantiating the “top-level”

module and invoking some user-written initialization method. To illustrate the

use of Jigsaw for the purposes discussed above, a conceptual sketch of a Jigsaw

interpreter follows.

4.4 An Interactive Jigsaw Interpreter

In this section, an outline of an interactive interpreter based on Jigsaw is

described. The interpreter will be used to demonstrate how one would actually

utilize Jigsaw to obtain the advantages described above.

Jigsaw defines a language for manipulating modules. Jigsaw’s notion of module

is a mutually recursive scope, so Jigsaw module operators are also operators on

scopes. This makes Jigsaw well suited to handling problems that arise in interactive

language systems.
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Consider the usual ML top level interpreter. It takes the view that every

expression submitted to it is implicitly prefixed by a let, and followed by an in,

creating the top level scope (known as the top level environment in ML).

This is appealing as it makes the interpreter behave like a language processor,

according to the lexical scope rules of the language. Unfortunately, it also means

that it is often impossible to interactively correct a bug. Suppose f is a function

whose definition is buggy. If one realizes this and submit a new definition for f ,

it shadows the old one. This is consistent with the notion of lexical scoping in

nested let expressions - the innermost definition shadows all others. However, any

other function using f remains bound to the previous definition, and will not be

corrected. This defeats the much of the purpose of having an interactive language

processor. The only workable way to develop programs is through editing files,

outside the interpreter.

One should point out that the approach taken by ML and others has the

advantage that code can be compiled as it is submitted. Later changes will not

require existing code to be adapted, by, say, linking in updated definitions of

functions. Another advantage is that there is no typing constraint on the new

definitions, since they are in a new scope.

LISP interpreters usually have a more intuitive behavior. A new definition will

affect the execution of earlier code using it. Of course, these interpreters rely on the

late binding of names to values, with a corresponding cost in performance. Typing

is not a problem in these languages either, since they are typically dynamically

typed.

A new definition is an extension of the existing environment, or scope. A revised

definition means that the existing environment is being overridden. To shadow an

existing definition, one may hide it and extend it with a new one. The concepts

of extension (via merge) and overriding are exactly those supported by Jigsaw.

Unlike a LISP interpreter, Jigsaw performs static typechecking, and can compile

modules as they are submitted like an ML interpreter.



57

The operation of a Jigsaw interpreter can now be described. A Jigsaw language

processor expects to be presented with a module expression. Such an expression is

either a single module, or a series of modules composed by operators.

The Jigsaw interpreter would first read in the initial environment (I/O routines,

system calls, standard utilities, etc.). In practice, this environment may be built

in, but conceptually this makes no difference. This standard environment is a

module expression. The interpreter would then expect a connecting operator, such

as merge, override, rename and so forth, followed by a new module expression.

The user thus specifies how to modify the top level environment. Each succeeding

input expression continues to modify the environment in this way.

If the type of a function is being revised in an inconsistent way, the interpreter

will insist that the old version be hidden. All functions referencing the old definition

need to be redefined with new type information in any case, so the interpreter may

eventually eliminate the old definition, when it is no longer referenced.

The interpreter must support commands for saving and retrieving modules to

and from the file system. Call these commands save and retrieve. Retrieve

is a function that takes a string specifying a filename, and returns the module

expression contained in that file. A program created separately using a text editor

can then be added to the existing environment in several ways. Retrieve filename

is an expression, that can be placed wherever a module expression is expected. In

this way, one can either import all the definitions in a file, using a merge operator:

merge retrieve filename

or, one can import them at a nested level, as in

merge module m = retrieve fn end

This latter form might be useful for importing an entire class library, which

might then require renaming, etc.

A save command would simply have the effect of writing out the value of

the current environment into a file whose name is specified. This file can then

be retrieved in a later interpreter session. Similar utilities that save and retrieve

compiled modules are also required.
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4.5 Adding Modules to Existing Languages

Many languages do not have adequate modularity constructs. These include

widely used programming languages (e.g., C [36], Pascal [32]), as well as countless

special-purpose and “little-languages” [4, Column 9], where the effort of designing

specific mechanisms for modularity is difficult to justify, but which could still benefit

from such mechanisms.

The simple notions of module and interface defined above are largely language

independent. This is because neither the value set used in definitions nor the form

of the types used in declarations are specified by Jigsaw. One requirement is that

the language being “modularized” support recursion, since modules are mutually

recursive scopes. When working with a language that does not support recursion,

users may accidentally create mutually recursive definitions which are in fact illegal,

and not get any compile time error or warning. 2

Suppose one wishes to define and manipulate modules consisting of statements

in some programming language, Lc. The definitions in modules will bind names to

denotable values of Lc. For example, if Lc = C, the denotable values will include

C functions and variables. Declarations and module interfaces will bind names to

Lc types (in fact, since modules may be nested, definitions may also bind names

to modules, and declarations may bind names to interfaces). Again using C as our

example, the typing rules for module operators will rely on C type equivalence as

the subtyping relation ≤ mentioned above.

The resulting language is not object-oriented, since it does not support first

class objects. Nevertheless, it employs inheritance. Inheritance supports module

interconnection by combining self reference among modules, and, of course, allows

existing code to be extended and modified.

A wide range of languages can be extended as described here. Many of these

languages are dynamically typed. In this case, the subtyping relation is simply

true. This restricts the degree of static interface checking possible. However, any

2A specialized version of Jigsaw could be created to deal with this problem in some way, e.g.,
by banning cyclic references.



59

language that is extended with Jigsaw style modules gains substantial benefits from

encapsulation, separate compilation (for compiled languages), modifiability and the

ability to define partially specified modules analogous to abstract classes.

4.5.1 Jigsaw as a Framework

Throughout this dissertation, Jigsaw is often referred to as a framework. As

discussed in section 1.1.2, the term framework has a particular meaning in the

context of object-oriented programming. The purpose of this section is to explain

the exact sense in which Jigsaw can be considered a framework.

Jigsaw defines a number of abstractions that are useful in the context of module

manipulation. These abstractions include those of module, interface and instance.

Of course, each of these abstractions has associated with it syntax and semantics.

Both the syntax and semantics of Jigsaw are defined relative to other, incompletely

specified abstractions such as value, type and even label, which represents the

lexical form of attribute names. This second set of abstractions belongs to the

computational sublanguage.

One way of reifying Jigsaw is to associate a class with each of the key abstrac-

tions it defines. Classes representing Lc are pure virtual classes. The result of

this reification is a collection of (abstract) classes, that together form a basis for

implementing a modular programming language processor. This is a framework, in

the sense used in the object-oriented programming community. A particular mod-

ular programming language can be implemented, by supplying definitions for the

pure virtual classes. These definitions are an implementation of the computational

sublanguage. Pseudo-code for such a framework is shown in Figure 4.4. Such a

framework could be coded up in Beta, a language that supports nested classes and

name-based typing. The pseudo-code shows many of the functions that would be

needed in such a framework, but does not purport to be complete. For example,

many functions would also need to access a module wide symbol table, but that is

not described here.
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Jigsaw relates to this framework as a language definition relates to a compiler

(see Figure 4.5). It is therefore a framework specification. This last phrase has

a double meaning. Jigsaw specifies how frameworks for implementing modular

languages should behave. Jigsaw is also a framework for specifications. Just

as implementation frameworks are completed by implementations, specification

frameworks are completed with specifications (Figure 4.6). Completing Jigsaw with

specifications for Lc yields a specification for a particular modular programming

language. Figure 4.7 shows all the relationships between Jigsaw, frameworks for

implementing modular programming languages, modular programming language

specifications and modular programming language processors.

It is important to realize that Jigsaw is indeed a framework. If Jigsaw was only

parameterized by Lc, then it could be thought of as a function from languages to

languages. After all, given a language Lc, Jigsaw produces a modular version of

that language. However, the relationship between a parameterized abstraction and

its parameter is unidirectional. The abstraction may refer to the parameter, but

not vice versa. As noted in Chapter 1, abstract classes present a bidirectional form

of abstraction. This is an important characteristic of frameworks.

Obviously, Jigsaw depends on Lc. To see that the relationship between Jigsaw

and Lc is bidirectional, consider a language with first class objects. In such a

language, the Jigsaw statement instantiate M is available within Lc. Lc depends

on Jigsaw’s notion of object. It is interesting to note that it is exactly when

Jigsaw is used in an object-oriented way, as a true framework rather than just

as a parameterized abstraction, that the resulting language is object-oriented.

One of the welcome properties of inheritance is that it can be applied repeatedly

to both complete and incomplete structures. An abstract class can be made

concrete, or it may be merely extended or modified but still remain abstract. Even

a concrete class can easily be modified. Similarly, a framework can be fleshed out

into an application, but it can also be extended and modified without becoming

a complete application. When a framework is completed, the set of classes that

comprise it can still be modified further.
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Jigsaw retains these properties as well. Variations on Jigsaw can be defined,

that are not complete language specifications. When a full language specification

is derived from Jigsaw, it is still structured so that it can be changed with relative

ease.

Conceptually, different interfaces are associated with different uses of the Jigsaw

framework. If the framework is being extended to create a new framework with, say,

additional operations on modules, the structure of modules is considered public, and

can be taken advantage of when new operators are defined. On the other hand, to

the language designer using a particular variant of Jigsaw, the module abstraction

is an abstract datatype, which provides certain known operations such as merge,

override, rename, etc.

One implementation of Jigsaw would be a framework like that described in

Figure 4.4. Such a framework could be the basis for a family of interoperable

language processors.

As noted earlier, Jigsaw permits type definitions in modules as a syntactic

shorthand, but does not support a semantic notion of types as module components.

Support for named typing is important when modularizing languages like Pascal,

whose type system is name-based. If Jigsaw modules could include types in this

manner, Jigsaw could be represented in itself. It does not seem difficult to extend

Jigsaw in this manner. While the details of such an extension are left for future

work, an outline is given in Chapter 8.

Even more valuable would be support for abstract datatypes. This is more

challenging problem, again discussed in Chapter 8.
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module
{ x = 0; y = 0;

dist = function(aPoint:{ x:Int, y:Int })
{

sqrt(sqr((x - aPoint.x)) + sqr((y - aPoint.y)))
}
} : { define x:Int, y:Int, dist:{ x:Int, y:Int } → Real }

Figure 4.1. A module and its interface

(m1 rename a to b) override (m2 rename a to b) = (m1 override m2)
rename a to b

Figure 4.2. Rename distributes over override

BorderMixin = module
{ borderWidth = 5; borderColor = red;

display = function(dontCare: Unit)
{

displayBorder();
displayBody();
}

displayBorder = function(dontCare: Unit) { ... } displayBody : Unit → Unit;
}

Window = module
{ x = 0; y = 0;

display = function(dontCare: Unit) { ... }
}

BorderWindow = Window copy display as displayBody override BorderMixin;

Figure 4.3. Using a mixin
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class Jigsaw Interface

class module;

function make module(value bindings: List[(label,value or module)]):module;
function interface of():interface;

function merge(b: module):module;
function override(b: module):module;
function restrict(l:label):module;
function project(l: List[label]):module;
function rename(l1,l2:label):module;
function freeze(l:label):module;
function freeze all except(l: List[label]):module;
function hide(l:label):module;
function show(l: List[label]):module;
function copy as(l1,l2:label):module;
function instantiate():instance;

function parse module(s: stream):module;

end; /* module

class interface;

function make interface(bindings: List[(label,type or interface)]):interface;

function interface eq(i2: interface): boolean; function subinterface(i2: interface):
boolean;

function parse interface(s: stream):interface;

end; /* interface
(* Continued in next figure *)

Figure 4.4. A framework implementing Jigsaw
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class label; /* pure virtual

function label eq(l2: label): boolean; /* pure virtual

function parse label(s: stream):label; /* pure virtual

end; /* label

class value; /* pure virtual

function parse value(s: stream):value; /* pure virtual

function type of():type; /* pure virtual

end; /* value

class type; /* pure virtual

function type eq(t2: type): boolean; /* pure virtual
function subtype(t2: type): boolean; /* pure virtual

function parse type(s: stream):type; /* pure virtual

end; /* type

class instance;

function select(l: label):value;

end; /* instance

type value or module = value | module;
type type or interface = type | interface;

end;

Figure 4.4. - Continued
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CHAPTER 5

SEMANTICS

The formalism remains an unaccommodating object of study, with-
out true structure, a piece of soft camembert. Jean-Yves Girard

Those readers whose primary interest is pragmatic can skip this chapter al-

together, without loss of continuity. Conversely, anyone whose main concern is

theoretical may find this chapter an interesting application of theory, but should

be warned again that this dissertation does not introduce new theory, but rather

utilizes theory to gain insight into language design. Finally, this chapter should be

of considerable interest to those computer scientists eager to translate theoretical

progress into improved language design.

One of the main points of this thesis is an elucidation of the meaning and

importance of the notion of mixin. Three different approaches to modeling mixins

denotationally are presented. These approaches represent a historical succession,

each progressively more uniform and simpler than its predecessor. This succession

culminates in the semantic definition of Jigsaw.

Jigsaw is a framework for modular programming language design that abstracts

over the computational sublanguage used, Lc.

Naturally, the formal definition of Jigsaw must also be abstract with respect

to Lc. There are several places in the definition where this abstraction is evident.

These include the context-free syntax, the type rules (context-sensitive syntax) and

the semantics.

In the context-free syntax, certain nonterminals are not defined. These include

expr and type, which represent the language Lc and its type-expression sublan-

guage, respectively. These must be provided by Lc.
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In the type rules, some rules are left unspecified. Jigsaw gives rules for well-

typed module values, but not for well-typing values of Lc. The situation is similar

with respect to rules for subtyping, type equivalence and type formation.

In the semantics, there are semantic clauses used, that are not given by Jigsaw.

Jigsaw’s semantics are defined by a translation to an untyped λ calculus augmented

with basic types, records, record operators, and let and where constructs.

The interesting part of the translation is that which defines modules and the

operations upon them. The translation of other parts of the language is simply

that defined by Lc.

Jigsaw is a typed language that guarantees the type safe use of module operators.

However, the operators are defined in an untyped λ calculus. A typed calculus is

not used, because no known typed calculus can express all the module operators

defined here in their full generality.

Section 5.1 gives a brief review of prior work on the semantics of object oriented

languages. Knowledge of this work is essential for understanding the semantics of

Jigsaw. Section 5.2 describes how to model the notion of mixin. Section 5.3 presents

the semantic basis for Jigsaw in informal terms. A complete formal definition of

Jigsaw follows in Section 5.4. Section 5.5 presents denotational semantics for an

imperative version of Jigsaw.

5.1 Background

5.1.1 Generators

In object oriented programming, objects include data, and code that operates

upon that data. Objects are thus inherently self-referential. The standard technique

for modeling self-reference is fixpoint theory [50]. Using fixpoint theory, an object

may be modeled using a record-generating function (called a generator following

Cook [17]). Figure 5.1 shows a simple object and its associated generator function.

This function takes a record as a parameter, and returns a record as a result. The

result record is similar to the object being modeled. The object’s methods, such as

dist, are represented by function valued fields in the result. The object’s data are
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represented by fields with ordinary values (e.g., x and y). All self-reference in the

object is replaced by reference to the generator’s formal parameter, s. The desired

object is the least fixed point of the generator function Y (Pgen).

An abstract class may be modeled as an inconsistent generator. An inconsistent

generator has the form λs : σ.e, where e : σ′ and σ is a subtype of σ′ [17]. This

captures the fact that self-reference within the class (σ) assumes more methods than

the class provides (σ′). One cannot take the fixpoint of such a generator, since its

domain is a proper subtype of its range. This models the fact that abstract classes

must not be instantiated.

5.1.2 Records

The record operations used in this chapter are defined in this subsection. Similar

operations have been used in the study of typed record calculi [12, 27, 71, 60].

However, this dissertation is not concerned with the typing problems raised by

these operators. Here, record operations are only used in the definitions of module

operators. These, in turn, are used only when the types of their operands (i.e.,

modules) are exactly known, so that type safety is easily guaranteed.

The meaning of each record operator is explained informally in this section. It

is not difficult to encode these operators in λ calculus; first, records are taken to

be a syntactic shorthand for functions from a domain of labels to the domain of

values. Using this representation for records, all operators used here are also easily

P = object
{ x = 0; y = 0;
dist = function(aPoint)
{
sqrt(sqr((x - aPoint.x)) + sqr((y - aPoint.y)))
}
}
Pgen = λs.{ x = 0, y = 0,

dist = λaPoint.
√

((s.x− aPoint.x)2 + (s.y − aPoint.y)2)}

Figure 5.1. An object and its generator
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expressed. Records are not self-referential. Other mechanisms such as generators

are needed to induce self-reference. See [9] for more details.

Each record operator has a corresponding operator for generators (see section

5.3). Related operators are distinguished by subscripts (e.g., θr is a record operator,

and θg is a generator operator).1 Records are denoted by r, r1, r2, names of record

attributes by a, b, and lists of attribute names by A.

The operators used here are:

• Merge, ‖r. r1 ‖r r2 yields the concatenation of r1 and r2. The records must

not have any attribute names in common.

• Restrict, \r. r\ra removes the attribute named a from r. If a is not defined

in r, r\ra = r.

• Project, πr. rπrA projects the record r on the names A. The use of the word

project is by analogy with relational algebra. The result of this operation

consists exclusively of the fields named in A. The names in A must be defined

in r.

• Select, .r. r.ra returns the value of the attribute named a in r. The name a

must be defined in r.

• Override, ←r. r1 ←r r2 produces a result that has all the attributes of r1

and r2. If r1 and r2 have names in common, the result takes its value for the

common names from r2.

• Rename, [ ← ]r. r[a ← b]r renames the attribute named a to b. a must be

defined in r, and b must not.

The syntax used here for records is a list of label bindings enclosed in braces:

1For a record operator θr, θg is usually what is referred to in [17] as the distributed version of
θ.
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record ::= {def list}|
record1 ‖r record2 |
record\rlabel |
record πr label list |
record .r label|
record1 ←r record2 |
record[label1 ← label2]

label list ::= label |
label label list

def list ::= nonempty def list |
empty

nonempty def list ::= def |
def, nonempty def list

def ::= label = expr

5.1.3 Inheritance

This subsection discusses the denotational semantics of inheritance [34, 59, 17].

Inheritance provides a way of modifying self-referential structures [17]. When a

value is modified via inheritance, all self-reference within the result refers to the

modified value. Inheritance involves manipulating the self-reference within objects.

Technically, this is achieved by manipulating generators, before taking their fixpoint

[59], [17]. Figure 5.2 illustrates this process. The object MP inherits from P,

but specializes the dist method. MP is modeled by a generator that invokes the

generator for P. This invocation yields a record, that is combined using the override

operation with another record which represents the specialized or new methods. In

MP = P override
{ dist = function(aPoint)
{

(x - aPoint.x) + (y - aPoint.y)
}
}

MPgen = λs.Pgen(s)←r {dist = λaPoint.(s.x− aPoint.x) + (s.y − aPoint.y)}

Figure 5.2. A manhattan point inherits from a point
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the modifying record, self-reference is modeled in the usual way, by reference to

the generator’s parameter. P’s generator is passed this parameter as well, thereby

binding self-reference in all methods to the modified object.

Modeling practical object-oriented languages has required slightly more involved

constructs. The main reason is to allow access to prior definitions, as discussed in

subsection 2.3.3. In that case, modifications are modeled as wrappers, of the form:

λself.λsuper.{. . .}

The parameter super is a record representing the attributes of the ancestor

being inherited from. The wrapper will produce a record representing the new

attributes being added during inheritance. Inheritance is then an operation on a

generator and a wrapper, yielding a new generator:

C ←g,w W = λs.(Cs)←r (Ws(Cs))

The expression (Cs) represents the subobject corresponding to the parent class.

This is passed to the wrapper (along with s, representing self-reference). The record

corresponding to the new attributes is returned by the wrapper application, and

added to original by the ←r operation.

As with all the formulations presented in this chapter, care must be taken when

extending this formulation to imperative languages, so that the instance variables of

the superclass are only allocated once. In the applicative case, repeated applications

of the generator C are equivalent, but in imperative extensions, a let must be used

to express the sharing of instance variables.

The following section shows that the semantic notion of wrapper corresponds

to the linguistic notion of mixin.

5.2 Modeling Mixins

This section shows how to model a language with mixins, as discussed in Chapter

3. Two approaches are presented. Subsection 5.2.1 discusses a direct generalization

of [17]. Subsection 5.2.2 gives an alternative approach in which mixin composition

is viewed as a special kind of function composition.
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5.2.1 A Mixin Composition Operator
Mixins can be modeled as special functions called wrappers. Mixin composition

can be modeled as a binary operation on wrappers, ←w, which returns a wrapper
as its result:

M1 ←w M2 = λs.λj.M1(s)(j)←r M2(s)(j ←r M1(s)(j))

This operator is associative:

(M1 ←w M2)←w M3 =
λs.λj.(M1 ←w M2)(s)(j)←r M3(s)(j ←r (M1 ←w M2)(s)(j)) =
λs.λj.[M1(s)(j)←r M2(s)(j ←r M1(s)(j))]←r

M3(s)(j ←r [M1(s)(j)←r M2(s)(j ←r M1(s)(j))])

M1 ←w (M2 ←w M3) =
λs.λj.M1(s)(j)←r (M2 ←w M3)(s)(j ←r M1(s)(j)) =
λs.λj.M1(s)(j)←r [M2(s)(j ←r M1(s)(j))←r

M3(s)((j ←r M1(s)(j))←r M2(s)(j ←r M1(s)(j)))]

Assuming that ←r is associative, then

(M1 ←w M2)←w M3 =
M1 ←w (M2 ←w M3) =
λs.λj.M1(s)(j)←r M2(s)(j ←r M1(s)(j))←r

M3(s)(j ←r M1(s)(j)←r M2(s)(j ←r M1(s)(j)))

This operator was first defined in [6].2 That account deliberately omitted the

discussion of self-reference, in order to simplify the presentation.

5.2.2 Mixin Composition as Function Composition

Here is another formulation of mixins, which seems more intuitive. A mixin is

modeled as an abstract subclass. The superclass is explicitly abstracted over, as in

λp.λs.p←g λs.e

where p is a generator, not a record, representing the superclass; e is a record valued

expression, and ←g is the override operation on generators, defined as:

2Thanks to William Cook for help in defining this operator, and in proving associativity.
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g1 ←g g2 = λs.g1(s)←r g2(s)

Such wrappers can be composed via ordinary function composition. If C and

P are such wrappers, one has

C ◦ P = λg.C(P (g))

This formulation has the advantage of simplicity. Its relationship to the language

constructs of Chapter 3 is obvious.

In this version, mixin composition is precisely function composition, so it is

clearly associative. Instantiation involves passing an empty generator BASE as

a parameter, and then taking the fixpoint of the result. The keyword super is

modeled as p(s).

Note that this formulation is not equivalent to the previous one. In section

5.2.1, mixins were modeled as wrappers of type

Record→ Record→ Record = Record→ Generator

Here, wrappers have type

Generator → Generator

The fact is that even this formulation is overly complex. As shown in earlier

chapters, the important functionality of mixins can be expressed based on a uniform

notion of module, augmented with judiciously chosen operations. The rest of

this chapter is devoted to giving a precise semantic characterization of the Jigsaw

framework.

5.3 Modeling Jigsaw

In the semantics of Jigsaw, all modules are modeled as generators. Module

combination operators are then modeled as functions that manipulate generators,

and return new generators as results. The operator definitions make use of the

record operations introduced in section 5.1.2. All module operators employ the tech-

nique demonstrated above to manipulate self-reference. Modules with declarations
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are modeled as inconsistent generators. Module operators can take inconsistent

generators as operands and may return them as results.

The rest of this section defines the set of operations upon generators used in this

chapter. These are then used in the translation to λ-calculus define in subsection

5.4.3.

The merge operator, ‖g, is defined below. It takes two generators as parameters

and produces a new generator as a result. Note that self-reference in the two

generators is shared in the resulting generator, since they are both applied to same

argument, s.

‖g= λg1.λg2.λs.g1(s) ‖r g2(s)

‖g is commutative and associative. The proofs of both properties are immediate,

based upon the commutativity and associativity of ‖r.

‖g commutes:

m1 ‖g m2 =
(λg1.λg2.λs.g1(s) ‖r g2(s))m1m2 =
λs.m1(s) ‖r m2(s) = λs.m2(s) ‖r m1(s) =
(λg1.λg2.λs.g1(s) ‖r g2(s))m2m1 =
m2 ‖g m1

‖g associates:

(m1 ‖g m2) ‖g m3 =
((λg1.λg2.λs.g1(s) ‖r g2(s))m1m2) ‖g m3 =
(λs.m1(s) ‖r m2(s)) ‖g m3 =
(λg1.λg2.λs.g1(s) ‖r g2(s))(λs.m1(s) ‖r m2(s))m3 =
λs.(λs.m1(s) ‖r m2(s))(s) ‖r m3(s) =
λs.(m1(s) ‖r m2(s)) ‖r m3(s) =
λs.m1(s) ‖r (m2(s) ‖r m3(s)) =
λs.m1(s) ‖r (λs.m2(s) ‖r m3(s))(s) =
((λg1.λg2.λs.g1(s) ‖r g2(s))m1(λs.m2(s) ‖r m3(s)) =
m1 ‖g (λs.m2(s) ‖r m3(s)) =
m1 ‖g ((λg1.λg2.λs.g1(s) ‖r g2(s))m2m3) =
m1 ‖g (m2 ‖g m3)
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Override is defined as:

←g= λg1.λg2.λs.g1(s)←r g2(s)

←g is associative and idempotent, but not commutative. To show that ← asso-

ciates, substitute← for ‖ in the associativity proof above. The idempotency of←g

also follows directly from the corresponding property of ←r:

m←g m = (λg1.λg2.λs.g1(s)←r g2(s))m m = λs.m(s)←r m(s) = λs.m(s) = m

←g may also be derived from the combination of merge and restrict (defined below).

There are several alternatives for defining the renaming operator. Rather than

present a single formulation, it seems valuable to discuss the various possibilities.

¿From this, one may better understand the trade-offs and subtleties involved in

formulating these operations.

Unlike other generator operations, [a← b]g is not exactly a distributed version

of [a← b]r. The result generator’s argument, s, cannot be passed unchanged to the

input generator g. The reason is that g expects an argument with type σ ≤ {a : α}

for some α, whereas s : τ ≤ {b : α}; the value associated with a in g, is named b in

s.

A first formulation of [a← b]g might therefore be

λg.λs.g(s[b← a]r)[a← b]r

This assures that g gets a parameter of the desired type, with the “right” value

for a. Unfortunately, this is not correct. The record renaming operator assumes

that the new name is not already defined in the argument record; otherwise, a name

would be doubly defined, and thus ambiguous. This is a type error. However, the

generators defined here are to be used polymorphically. The argument s may very

well have a defined, since it originates in a module derived later. In fact, this the

usual case for renaming. The reason for renaming an attribute is typically to avoid

conflict with another attribute with the same name, prior to a merge. So if one

attribute named a is being renamed, it is very likely that another attribute named
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a will be part of the module. Certainly this possibility cannot be precluded. If this

is the case, the definition above will fail; it will pass on to g a malformed argument

with multiple attributes with the same name, a.

Figure 5.3 shows the next attempt, which uses ←r instead of [a← b]r. Though

this seems slightly less natural, it is necessary to avoid the problem mentioned in

the preceding paragraph.

This version also raises problems. The difficulty here is related to the fact that

it is possible to rename not only defined attributes, but attributes that have only

been declared (pure virtuals). If a denotes a pure virtual, than the result returned

by g does not include an attribute named a. The question then is whether renaming

an undefined attribute is legal. This depends on the underlying record calculus.

It seems quite reasonable to allow such renaming, and expect it to have no effect.

However, in existing record calculi, renaming is often derived from restriction and

merge. In this case, renaming a nonexisting attribute is invalid, since it implies

selecting the attribute. If one wishes to inherit all the valuable results proved for

such a calculus, it may be worthwhile to change the definition of [a← b]g, as shown

in Figure 5.4.

It is tempting to define rename by composing the generator versions of restrict

and merge. This is not possible, due to the presence of self-reference. The type

rule for rename must ensure that the attribute is renamed in the type of the result.

A very important property of the renaming operator is that it distributes over

override (see section 4.2.5), namely:

(m1 ←g m2)[a← b]g = (m1[a← b]g)←g (m2[a← b]g)

Using definition 5.4, this is not strictly true; distributivity holds whenever all

operations are type correct, but that need not always be the case. Using definition

[a← b]g = λg.λs.g(s←r {a = s.rb})[a← b]r

Figure 5.3. A valid definition of renaming.
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5.3, their is no such problem. The proof, as usual, follows from the corresponding

property for record operations. The distributive property holds always if rename

is defined as a primitive in the record calculus, such that renaming a nonexistent

attribute is allowed. If rename is a derived operation, distributivity holds whenever

the expression is type correct. The upshot of all this is that users can rely on the

distributivity property, since it holds in all type-correct programs.

The restrict operation is defined below, and is associative. Again, proof of

this property follows trivially from the same property for the corresponding record

operator.

\ga = λg.λs.g(s)\ra

The semantic definition for projectg is

πg A = λg.λs.g(s)πrA

and the definition for freeze is

freeze a = λg.Y (λf.λs.g(s←r {a = f(s).ra}))

This definition deserves some discussion. The result is a generator, the fixpoint

of a generator generating function, q = λf. . . .. The generator Y (q) agrees with g,

with the exception of its self-reference to attribute a. Regardless of the value of s,

all references to s.a within the methods of Y (q) are bound to f(s).ra = Y (q)(s).ra.

When the fixpoint is taken again, all references to s.ra will be equal to Y (Y (q)).ra =

Y (g).ra.

Similarly,

freeze all except A = λg.Y (λf.λs.g(s←r f(s)←r (sπrA)))

Overriding s with f(s), rather than just {a = f(s).ra}, means that all defined

attributes are being frozen. We then override again, with sπrA, guaranteeing that

the attributes in A will indeed get their values from s, and therefore still be subject

to redefinition.
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Here are the definitions of show and hide:

hide a = λg.λs.(freeze a)(g)(s)\ra

show A = λg.λs.(freeze all except A)(g)(s)πrA

The duality between show and hide is apparent in the use of πr instead of \r,

and in the use of freeze all except instead of freeze.

The definition of copy as is straightforward

copy a as b = λg.λs.let super = g(s) in super ‖r {b = super.ra}

This concludes the definitions of generator operations, which constitute the core

of Jigsaw’s semantics. The definitions given above will be used in the full semantics,

given in section 5.4.
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5.4 Formal Definition of Jigsaw

5.4.1 Syntax
mexpr ::= module binding list end |

mexpr1 ‖ mexpr2 |
mexpr1 ← mexpr2 |
mexpr[label1 ← label2] |
mexpr\label |
mexpr π label list |
mexpr freeze label |
mexpr freeze all except label list |
mexpr hide label |
mexpr show label list |
mexpr copy label1 as label2

iexpr ::= instantiate mexpr
label list ::= label |

label label list
binding list ::= nonempty binding list |

empty
nonempty binding list ::= binding |

binding, nonempty binding list
binding ::= decl |

def
decl ::= label : type |

label : mtype
def ::= label = expr |

label = mexpr
mtype ::= {define decl list declare decl list}
itype ::= {vdecl list}
decl list ::= nonempty decl list |

empty
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nonempty decl list ::= decl |
decl, nonempty decl list

vdecl list ::= nonempty vdecl list |
empty

nonempty vdecl list ::= vdecl |
vdecl, nonempty vdecl list

vdecl ::= label : type

As noted early in this chapter, the nonterminals expr and type are not defined as

part of Jigsaw. They must be provided by the language of computation, Lc. Jigsaw

itself provides two kinds of expressions: mexpr’s, which denote modules, and iexpr’s

which denote module instances. In some cases, Lc may define expr so that some

derivations of expr lead to iexpr. This shows that Lc is not merely a parameter to

Jigsaw, but that there is a bidirectional interaction, characteristic of inheritance.

Expr refers back to iexpr, precisely when the resulting language is object-oriented;

the language supports module instances (objects) as values. Going further, expr

may derive mexpr.3 In this case, module definitions themselves are first class values.

Associated with mexpr and iexpr are mtype and itype, representing interfaces and

instance types. The terminal symbol label is also not determined by Jigsaw, but

by Lc, according to its lexical conventions.

5.4.2 Type Rules

In this subsection, the type rules of Jigsaw are given. The rules are given in a

natural deduction notation. Each rule consists of antecedents, or assumptions, and

a conclusion that is true provided all the antecedents are true. The antecedents

and conclusion are separated by a horizontal line. The conclusion and some of the

antecedents are in the form of assertions. An assertion has the form Γ ` a, and

means that in context Γ, assertion a is provable.

3It does not appear useful for expr to derive mexpr but not iexpr. Such a language can
manipulate modules, but never instantiate them.
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5.4.2.1 Judgements

Judgements are generic assertions that one wants to prove within a type (or

other) calculus. The judgements of Jigsaw are described in this section.

First, it must be clear what entities are being reasoned about. These are

modules, including literal modules as well as compound module expressions. The

goal of the system is to verify that a module denoted by a module expression has

a valid interface. Modules have expressions (and other modules) as components.

Expressions denote values of Lc. Expressions are associated with types, and the

type rules of Lc determine the types of expressions. In addition to types and

interfaces (the types of modules), it is useful to define the concept of a signature.

signature ::= type | interface

In addition, there are instance expressions, which have instance types. Whether

instance expressions (types) are expressions (types) of Lc depends on the particular

choice of Lc.

The judgements are summarized in Figure 5.5. The purpose of the rules given is

to give an unambiguous description of the semantics. Those rules deemed relevant

have been included, while others, necessary for formal soundness and completeness,

have been omitted. The most important rules in Jigsaw are those for the judgements

M : I and O :: ω. These rules are given in the following section.

A complete formalization of the Jigsaw type system includes rules for all the

judgements mentioned in Figure 5.5. Note that several of the judgements listed are

judgements of Lc. These include e : τ, τ type and σ ≤ τ . These may be considered

to be pure virtual judgements.

A considerable number of rules of a purely technical nature. For example, there

must be rules to allow permutation of the order of attributes in interfaces and

object signatures. Other rules relate types and interfaces to signatures, as well as

subtypes and subinterfaces to subsignatures. Essentially these rules state that a

type is a signature, an interface is a signature and the signature equivalence and

subsignature relationships follow from the corresponding relationships on types and
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[a← b]g = λg.λs.g(s←r {a = s.rb})[a← b]r

If g defines a, else

[a← b]g = λg.λs.g(s←r {a = s.rb})

Figure 5.4. An alternative definition of renaming.

e : τ Expression e has type τ
M : I Module expression M has interface I
V : Σ Value V has signature Σ
O :: ω Object O has object signature ω
ω osig Object signature ω is well formed
Γ context Context Γ is well formed
τ type Type τ is well formed
I interface Interface I is well formed
Σ signature Signature Σ is well formed
σ ≡T τ Type σ is equivalent to type τ
I ≡I K Interface I is equivalent to interface K
Σ ≡S T Signature Σ is equivalent to signature T
σ ≤T τ Type σ is a subtype of τ
I ≤I K Interface I is a subinterface of K
Σ ≤S T Signature Σ is a subsignature of T

Figure 5.5. Judgements of Jigsaw.
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interfaces. Likewise, if a value has a type or interface, that type or interface is its

signature. All these rules, as well as those governing well-formedness, have been

omitted here.

5.4.2.2 Key Rules

The following notational conventions are used throughout this subsection. Mod-

ule attributes are denoted by the letters a, b, c, d, e, f. Their signatures are α, β, γ, δ, ε

and φ, respectively. Attribute values are denoted by the letter v. Attribute names

and values are indexed with the letters i, j, k, l,m, n, p, q, r, s. Contexts are denoted

by Γ. The notation τ ↓ σ denotes the least common subsignature of τ and σ. For

interfaces, this is defined only when σ = τ . For types, this depends on Lc’s type

system. Each rule is preceded by its name, written in italics.

The rule Module specifies how to deduce the signature of a module. One

difficulty that may arise is that it may not always be possible to infer the type

αi of a value definition vi, because of recursion or due to idiosyncracies of the type

system of Lc. Assume that an explicit declaration ai : αi = vi is given in such cases.

Module

Γ, a1 : α1, . . . , am : αm, d1 : δ1, . . . , dk : δk ` δ1 signature,
. . . ,
Γ, a1 : α1, . . . , am : αm, d1 : δ1, . . . , dk : δk ` δk signature,
Γ, a1 : α1, . . . , am : αm, d1 : δ1, . . . , dk : δk ` v1 : α1,
. . . ,
Γ, a1 : α1, . . . , am : αm, d1 : δ1, . . . , dk : δk ` vm : αm,
∀i ∈ 1 . . .m.∀j ∈ 1 . . .m.i 6= j ⇒ ai 6= aj,
∀i ∈ 1 . . . k.∀j ∈ 1 . . . k.i 6= j ⇒ di 6= dj,
∀i ∈ 1 . . .m.∀j ∈ 1 . . . k.ai 6= dj
Γ `module

a1 = v1, . . . , am = vm,
d1 : δ1, . . . , dk : δk

end : {define
a1 : α1, . . . , am : αm

declare
d1 : δ1, . . . , dk : δk}
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The next two rules, Merge and Override, are the most involved, and employ

the following additional notational conventions. The attributes a1i, i ∈ 1 . . .m, are

those defined only in m1. Likewise, the attributes a2i, i ∈ 1 . . . n, are those defined

only in m2. Similarly, the attributes d1i, i ∈ 1 . . . k, are those declared only in m1,

and d2i, i ∈ 1 . . . l, are those declared only in m2. Attributes bi, i ∈ 1 . . . p, are

defined in m1 and also declared in m2, while ci, i ∈ 1 . . . q, are defined in m2 and

also declared in m1. Finally, attributes ei, i ∈ 1 . . . r, are declared in both m1 and

m2.
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Merge

Γ ` m1 : {define
a11 : α11, . . . , a1m : α1m,
b1 : β11, . . . , bp : β1p

declare
c1 : γ11, . . . , cq : γ1q,
d11 : δ11, . . . , d1k : δ1k,
e1 : ε11, . . . , er : ε1r}

Γ ` m2 : {define
a21 : α21, . . . , a2n : α2n,
c1 : γ21, . . . , cq : γ2q

declare
b1 : β21, . . . , bp : β2p,
d21 : δ21, . . . , d2l : δ2l,
e1 : ε21, . . . , er : ε2r},

∀i ∈ 1 . . . p.Γ ` β1i ≤S β2i,
∀i ∈ 1 . . . q.Γ ` γ2i ≤S γ1i,
∀i ∈ 1 . . . r.Γ ` ε1i ↓ ε2i signature,
∀i ∈ 1 . . .m.∀j ∈ 1 . . . l.a1i 6= d2j,
∀i ∈ 1 . . . n.∀j ∈ 1 . . . k.a2i 6= d1j,
∀i ∈ 1 . . . k.∀j ∈ 1 . . . l.d1i 6= d2j,
∀i ∈ 1 . . .m.∀j ∈ 1 . . . n.a1i 6= a2j

Γ ` m1 ‖ m2 : {define
a11 : α11, . . . , a1m : α1m, a21 : α21, . . . , a2n : α2n,
b1 : β11, . . . , bp : β1p,
c1 : γ21, . . . , cq : γ2q

declare
d11 : δ11, . . . , d1k : δ1k, d21 : δ21, . . . , d2l : δ2l,
e1 : ε11 ↓ ε21, . . . , er : ε1r ↓ ε2r}

The Override rule uses on additional notational convention: attributes fi, i ∈

1 . . . s, are those defined in both m1 and m2.
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Override

Γ ` m1 : {define
a11 : α11, . . . , a1m : α1m,
b1 : β11, . . . , bp : β1p,
f1 : φ11, . . . , fs : φ1s

declare
c1 : γ11, . . . , cq : γ1q,
d11 : δ11, . . . , d1k : δ1k,
e1 : ε11, . . . , er : ε1r},

Γ ` m2 : {define

a21 : α21, . . . , a2n : α2n,
c1 : γ21, . . . , cq : γ2q,
f1 : φ21, . . . , fs : φ2s

declare
b1 : β21, . . . , bp : β2p,
d21 : δ21, . . . , d2l : δ2l,
e1 : ε21, . . . , er : ε2r},

∀i ∈ 1 . . . p.Γ ` β1i ≤S β2i,
∀i ∈ 1 . . . q.Γ ` γ2i ≤S γ1i,
∀i ∈ 1 . . . r.Γ ` ε1i ↓ ε2i signature,
∀i ∈ 1 . . . s.Γ ` φ2i ≤ φ1i,
∀i ∈ 1 . . .m.∀j ∈ 1 . . . l.a1i 6= d2j,
∀i ∈ 1 . . . n.∀j ∈ 1 . . . k.a2i 6= d1j,
∀i ∈ 1 . . . k.∀j ∈ 1 . . . l.d1i 6= d2j,
∀i ∈ 1 . . .m.∀j ∈ 1 . . . n.a1i 6= a2j

Γ ` m1 ← m2 : {define
a11 : α11, . . . , a1m : α1m, a21 : α21, . . . , a2n : α2n,
b1 : β11, . . . , bp : β1p,
c1 : γ21, . . . , cq : γ2q,
f1 : φ21, . . . , fs : φ2s

declare
d11 : δ11, . . . , d1k : δ1k, d21 : δ21, . . . , d2l : δ2l,
e1 : ε11 ↓ ε21, . . . , er : ε1r ↓ ε2r}
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Rename Def

Γ ` m : {define
a1 : α1, . . . , am : αm

declare
d1 : δ1, . . . , dk : δk},

∀i ∈ 1 . . . k.b 6= di,
∀i ∈ 1 . . .m.b 6= ai
Γ ` m[am ← b] : {define

a1 : α1, . . . , b : αm

declare
d1 : δ1, . . . , dk : δk}

Rename Decl

Γ ` m : {define
a1 : α1, . . . , am : αm

declare
d1 : δ1, . . . , dk : δk},

∀i ∈ 1 . . . k.e 6= di,
∀i ∈ 1 . . .m.e 6= ai
Γ ` m[dk ← e] : {define

a1 : α1, . . . , am : αm

declare
d1 : δ1, . . . , e : δk}
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Restrict

Γ ` m : {define
a1 : α1, . . . , am : αm

declare
d1 : δ1, . . . , dk : δk}

Γ ` m\am : {define
a1 : α1, . . . , am−1 : αm−1

declare
d1 : δ1, . . . , dk : δk, am : αm}

Project

Γ ` m : {define
a1 : α1, . . . , am : αm, b1 : β1, . . . , bn : βn

declare
d1 : δ1, . . . , dk : δk}

Γ ` mπ(b1, . . . , bn) : {define
b1 : β1, . . . , bn : βn

declare
a1 : α1, . . . , am : αm,
d1 : δ1, . . . , dk : δk}

Freeze

Γ ` m : {define
a1 : α1, . . . , am : αm

declare
d1 : δ1, . . . , dk : δk}

Γ ` m freeze am : {define
a1 : α1, . . . , am : αm

declare
d1 : δ1, . . . , dk : δk}
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Freeze all except

Γ ` m : {define
a1 : α1, . . . , am : αm, b1 : β1, . . . , bn : βn

declare
d1 : δ1, . . . , dk : δk}

Γ ` m freeze all except (b1, . . . , bn) : {define
a1 : α1, . . . , am : αm,
b1 : β1, . . . , bn : βn

declare
d1 : δ1, . . . , dk : δk}

Hide

Γ ` m : {define
a1 : α1, . . . , am : αm

declare
d1 : δ1, . . . , dk : δk}

Γ ` m hide am : {define
a1 : α1, . . . , am−1 : αm−1

declare
d1 : δ1, . . . , dk : δk}

Show

Γ ` m : {define
a1 : α1, . . . , am : αm, b1 : β1, . . . , bn : βn

declare
d1 : δ1, . . . , dk : δk}

Γ ` m show (b1, . . . , bn) : {define
b1 : β1, . . . , bn : βn

declare
d1 : δ1, . . . , dk : δk}
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Copy as

Γ ` m : {define
a1 : α1, . . . , am : αm

declare
d1 : δ1, . . . , dk : δk},

∀i ∈ 1 . . . k.b 6= di,
∀i ∈ 1 . . .m.b 6= ai
Γ ` m copy am as b : {define

a1 : α1, . . . , am : αm, b : αm

declare
d1 : δ1, . . . , dk : δk}

Instantiate

Γ ` m : {define a1 : α1, . . . , am : αm}
Γ ` α1 type, . . . ,Γ ` αm type
Γ ` instantiate m :: {a1 : α1, . . . , am : αm}

5.4.3 Translation to λ calculus

The meaning of Jigsaw expressions can now be defined by a translation function

T that translates Jigsaw syntax into λ-calculus.

T [[module binding list end]] = λs.T [[binding list]] (5.1)

T [[m1 ‖ m2]] = ‖g T [[m1]]T [[m2]] (5.2)

T [[m1 ← m2]] =←g T [[m1]]T [[m2]] (5.3)

T [[m[a← b]]] = [a← b]gT [[m]] (5.4)

T [[m\a]] = (\ga)T [[m]] (5.5)

T [[mπA]] = (πgA)T [[m]] (5.6)

T [[m freeze a]] = (freeze a)T [[m]] (5.7)

T [[m freeze all except A]] = (freeze all except A)T [[m]] (5.8)

T [[m hide a]] = (hide a)T [[m]] (5.9)
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T [[m show A]] = (show A)T [[m]] (5.10)

T [[m copy a as b]] = (copy a as b)T [[m]] (5.11)

T [[instantiate m]] = Y (T [[m]]) (5.12)

T [[decl, binding list]] = T [[binding list]] (5.13)

T [[def, binding list]] = T [[def ]] ‖r T [[binding list]] (5.14)

T [[label = expr]] = {label = T [[expr]]} (5.15)

T [[label = mexpr]] = {label = T [[mexpr]]} (5.16)

T [[expr]] = TLc [[expr]] (5.17)

The “pure virtual” function TLc defines the meaning of Lc expressions by trans-

lating them into λ-calculus as well.

5.5 An Imperative Jigsaw

This section shows how to modify Jigsaw to support imperative computational

sublanguages. One cannot just “plug in” an imperative language as Lc. The module

operators defined in section 5.3 are no longer sufficient. However, entirely analogous

definitions that are cognizant of imperative constructs, can be substituted for the

applicative module operator definitions.

In [29], Andreas Hense showed how the applicative semantics of inheritance

given by Cook [17] could be extended to model imperative object oriented lan-

guages. The key problem is how to formulate the domains. In particular, the

domains of generators must somehow model the fact that instantiation effects the

store. The semantics given below use the solution proposed in [29], applied to the

operator based formulation of Jigsaw.

The basic intuition behind these semantics is that when the fixpoint of a gen-

erator is taken, the result is a constructor function that may be invoked upon a

particular store, to create an instance. This insight is due to Hense. Used in

the context of Jigsaw rather than in that of a more conventional object-oriented

language, the semantics become simpler, due to the uniformity of the Jigsaw

approach.
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From: gilad@facility.cs.utah.edu Date: Sat, 9 Nov 1996 17:09:51 -0700 To:

gilad@bracha.org Subject: ds

5.5.1 Denotational Semantics of Imperative Jigsaw

5.5.2 Syntactic Domains
Id I Identifiers
Bl B Binding lists
Mdl M Module expressions
SyntaxLc L Syntax of Lc denotable values
V al = Mdl + SyntaxLc V Denotable values
Uop U Unary operators
Bop D Binary operators
Typ T Types and Interfaces

5.5.3 Semantic Domains
DvLc Lc Denotable values
Loc l Locations
Sv Storable values
Dv = DvLc +Object+ Loc+Generator v Denotable values
Env = Id→ Dv r Environments
Object = Env Objects
Store = Loc→ Sv s Stores
Constructor = Store→ Object× Store c Object constructors
Generator = Constructor → Constructor m Classes or Modules
UnaryOp = Generator → Generator u Unary operators
BinOp = Generator → Generator → Generator d Binary operators

(curried)

5.5.4 Semantic Functions

The definitions of semantic functions make use of the auxiliary function new :

Store→ Loc× Store. This function allocates a new location in the store.

MLc : SyntaxLc → Env → DvLc

B : Bl → Env → Store → Env × Store

B[[ v : T ]] r s = ({}, s)

B[[ v := V ]] r s =
let (l, s′) = new s ( V [[V ]] r) in

({v = l }, s′)
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B[[ v = V ]] r s = ({ v = V [[V ]] r }, s)

B[[ B1, B2]] r s =
let (r1, s1) = B[[B1]] r s in
let (r2, s2) = ( B[[B2]] r s1) in
(r1 ‖r r2, s2)

V : V al → Env → Dv

V [[L]] r = MLc [[L]] r

V [[M ]] r = M[[M ]] r

M : Mdl → Env → Generator

M[[ module B end ]] r =
λ cself . λ screate.
let (rself , ) = cself screate in
B[[B]] (r ←r rself ) screate

M[[M1 D M2 ]] r =
let m1 = M[[M1]] r in
let m2 = M[[M2]] r in
D[[D]] m1 m2

M[[M U ]] r =
let m = M[[M ]] r in
U [[U ]] m

D : Bop → BinOp

D[[D]] =
λ m1. λ m2. λ cself . λ screate.
let (r1, s1) = m1 cself screate in
let (r2, s2) = m2 cself s1 in

(r1 Dr r2, s2)

U : Uop → UnaryOp

U [[U ]] =
λ m. λ cself . λ screate.
let (r, s) = m cself screate in

(r Ur, s)



CHAPTER 6

MODULA-π

Be real, Lambdaman. This isn’t a POPL conference. Harry Hack-
well

In view of the difficulty of introducing new languages into widespread use, it

is extremely valuable to be able to incorporate new linguistic developments in an

evolutionary manner. Adding operators like those defined in the previous two

chapters to existing languages is therefore an attractive possibility.

This chapter presents an upwardly compatible extension of Modula-3, incor-

porating most of the operators described in Chapter 4. In this extension, the

operators are applied not to the modules of Modula-3 but to its classes (known as

object types).1

Naturally, the full flexibility of Jigsaw is not supported. Still, the resulting lan-

guage supports strong typing, multiple inheritance and mixins in an encapsulated

manner.

This design represents a particular configuration of Jigsaw. In this configuration,

the language of computation is a general purpose, object-oriented programming

language, and Jigsaw modules serve as classes in the computation language. Fur-

thermore, the language incorporates certain restrictions intended to accommodate

efficient implementation, without sacrificing the general principles of modularity.

Section 6.1 explains why Modula-3, rather than another programming language,

was chosen as a candidate for extension. Section 6.2 presents a review of the salient

features of Modula-3, for those unfamiliar with the language. Section 6.3 then

discusses the extension, Modula-π.

1An early, less ambitious version of this work appeared in [6].
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6.1 Choice of Language

Modula-3 [10] was chosen as a basis for an extension incorporating Jigsaw style

inheritance operators. The particular form of inheritance developed below will

be referred to as operator-based inheritance. Modula-3 is well suited for such an

extension, because

1. It supports single inheritance. Single inheritance naturally generalizes either

to mixin-based inheritance or to Jigsaw style inheritance. Languages that

already provide a notion of multiple inheritance are harder to modify cleanly.

2. It is is strongly typed. Strong typing is necessary for safety, and is a desirable

property in a modular language, as reflected in criterion 5 of Chapter 2. The

type regime of Modula-3 also allows for an efficient implementation. One of

the goals of this extension was to show how Jigsaw style operations could be

incorporated in a high-performance language.

3. It employs structural subtyping. Jigsaw already employs a form of structural

subtyping, because structural subtyping is preferable to name based typing

when separately developed modules must interact [55, section 8.1].

6.2 A Review of Modula-3

The purpose of this section is to present an overview of the key Modula-3 features

necessary to understand the language extension. Readers are referred to [55] for a

complete language definition.

6.2.1 Modula-3 Inheritance

Modula-3 supports inheritance via object types. Object types are roughly

analogous to classes in most object-oriented languages. An example of object types

in Modula-3 is given in Figure 6.1.

In the example, Person defines an instance variable name of type string2 and a

method display. The method is defined by providing a name, followed by a signature,

2Modula-3 uses text for character strings. However, it is assumed that string has been defined.
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or formal parameter list. In this case, the signature is empty. The method is then

assigned a value, which is a separately defined procedure, displayPerson. If o is an

object of type Person, o.display() is interpreted as displayPerson(o).

The definition of Graduate has two parts: A preexisting definition, Person, and

a modification given by the object . . . overrides . . . end clause. Graduate is

a subtype of Person, which is its supertype. Graduate inherits from Person, but

includes a method override for display. The method override names the method

being overridden, and then assigns a new value to it, namely displayGraduate. A

signature is not given, since it will always be identical to the signature of the

corresponding method in the supertype. The overridden methods of Person may be

referred to by Graduate through the syntax Person.methodname. This is similar to

super in Smalltalk, but more general.

6.2.2 Other Salient Features

Modula-3 programs are composed of separately compilable parts. Specifications

(only syntactic) are given by interfaces, and implementations are defined by mod-

ules. It is important not to confuse these modules and interfaces with those of

Jigsaw.

Module interconnection is by means of import and export clauses. A module

may export several interfaces. Other modules may import such interfaces, estab-

lishing a connection between modules.

Data abstraction is supported by the notion of opaque types. The concepts of

interface, import/export, and opaque types are well known, and need not be treated

extensively here. The Modula-3 language does introduce several newer ideas which

must be understood before the language extension can be presented.

One of the relatively new constructs supported by Modula-3 is that of a partially

opaque type. Unlike completely opaque types, some information about the structure

of a partially opaque type is publically available.

Modula-3 relies on structural typing. However, in order to support name-based

typing as well, brands are used. A type may have a unique brand associated
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with it, which distinguishes the type from all other types that would otherwise

be structurally equivalent.

Modula-3 distinguishes between traced and untraced references. Traced refer-

ences are are automatically reclaimed by the garbage collector, while untraced

references are not. This allows writing both low-level code that may be impaired

by the presence of built in storage reclamation, and higher level code that benefits

from garbage collection.

In some cases, the static typechecking of Modula-3 is deemed too rigid, and

so dynamic typechecks are also supported. Of special interest in this chapter is

the narrow construct. Using narrow, it is possible to explicitly coerce a type

into one of its supertypes or subtypes (the latter option induces a dynamic check).

Narrowing also occurs implicitly during assignments and parameter passing.

Revelations are a mechanism that allows information about opaque types to

be selectively distributed. Like the friend clauses of C++, revelations allow finer

control over information hiding. Revelations can be full or partial, just like opaque

types.

Revelations and partially opaque types are features new in Modula-3 and their

interaction with inheritance is subtle. This subtlety is what makes the extension of

Modula-3 with Jigsaw style operators challenging, as section 6.3.2 demonstrates.

6.2.3 Typing

As noted above, Modula-3 employs structural typing. In this section, typing

of objects is discussed. The subtyping relation is different from Jigsaw’s, and is

more sensitive to the needs of an efficient implementation. This relation will be

modified in the language extension, but its basic premises will be preserved. The

rules defining Modula-3’s subtype relation on object types are shown in Figure 6.2.

Object types are a special kind of reference type. As described above, there are

two kinds of references: traced and untraced. The type of all traced references is

refany, while that of untraced references is address. Analogously, there are traced

and untraced objects, which belong to types root and untraced root respectively.
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All traced objects are also traced references, and likewise for untraced objects and

references. The type null includes only the special reference nil, the null reference.

nil is a member of every reference type. Finally, object types are always subtypes

of their ancestors.

The subtyping relation recognizes the boundaries between object constructors.

It makes the order of these constructors, and of the attributes within them, signif-

icant. This is different from the subtyping relation used in Jigsaw. Object types

that support the same protocol may not be the same, restricting reusability. On

the other hand, this subtyping relation makes it easy to ensure a commonality of

structure among subtype representations, allowing a more efficient implementation.

6.3 Modula-π: An Extension of Modula-3

The goal of the extension was to provide as much of the power of the Jigsaw

framework as possible, in the context of an upwardly compatible extension of an

existing language. Such an extension must be syntactically, semantically and

pragmatically upward compatible. Syntactic and semantic compatibility are widely

recognized needs. In a situation like this, pragmatic compatibility is also crucial.

Modula-3 was engineered to work well in certain contexts. The extension should

not violate the language’s assumptions as far as performance (compilation and

execution time and space) etc.

6.3.1 Object Types and their Operators

The extension is based on an analogy between object types and Jigsaw modules.

Object type expressions will be constructed using Jigsaw-style operators. Object

type expressions can be either primitive or compound.

The primitive constructor for object types is

object fieldlist methods methodlist end.

Such clauses are then connected by means of object-type operators. The op-

erators are: merge, override, restrict, project, rename, copy as, show and
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shadow. The operators are essentially the same as in Jigsaw, except for show and

shadow.

6.3.2 Type Abstraction

In the context of Modula-3, the use of merge poses some difficulties. The

Jigsaw type system was based upon the assumption that the exact signature of

every module was known. Translating this assumption into terms of Modula-π,

this means that all the fields and methods of an object type are completely known

when any operator acts upon an object type. This assumption is not valid in

Modula, due to the presence of abstract data types.

For example, given the declarations of Figure 6.3 one cannot determine whether

there are any conflicts between T1 and T3. If T1 = T2 T6, and T3 = T4 T6, then

the above declaration should be flagged as illegal. But if T2 and T4 do not conflict,

we have no way of knowing of a conflict. In fact if T1 = T2, T3 = T4, there need

not be a conflict. It could be argued that since the conflict is invisible, we can

ignore it, since no ambiguity can arise. However, there may be scopes in which

enough information is known for the ambiguity to surface. To see this, consider a

scope which imports T5 and includes revelations for T1 and T3. It would appear

that (partially) opaque object types cannot be used in object type expressions.

This another manifestation of the problem mentioned in Chapter 3. Inheritance

in the presence of polymorphic type abstraction poses a serious challenge to static

typechecking.

In Jigsaw, the general approach to solving problems is to introduce appropriate

operators. In this case, the show operator is used. The main purpose of the show

operation is to resolve problems that arise due to opacity and revelations.

A show B is similar to the Jigsaw show operation, except that the parts

“hidden” by the operation are potentially observable via narrowing. The show

operator is used to ensure that only known fields of the operands of merge are

accessible. The type system requires that all accessible fields in both arguments to
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merge be known. This forces the user to explicitly hide any potentially conflicting

fields. The example given above can be rewritten as

T5 = (T1 show T2) merge (T3 show T4)

Of course, if T2 and/or T4 are not completely known, this will not be sufficient,

and the process may have to continue. In other scopes, the explicit use of show

will prevent additional knowledge of potential conflicts from becoming a problem.

show has no effect except for typing. A show B is well formed only when A <: B.

6.3.3 Subtyping

This section presents the typing rules for object types in Modula-π.

Type identity is defined as in Modula-3. Two types are identical iff their

expanded definitions are identical. The subtyping relation on mixins, T <: S

(read T is a subtype of S, or S is a supertype of T ) is defined in Figure 6.4. The

shadow operation shown in the figure is discussed in the following subsection.

<: is reflexive and transitive.

6.3.4 Compatibility

In order to obtain a language compatible with Modula-3, an additional operator

is introduced, and some syntactic adjustments are made.

Recall that in Modula-3, inheritance is expressed by adjacent object-type con-

structors. The semantics are defined so that the modifying object-type constructor

“shadows” the supertype. Fields and methods in conflict between the two are

resolved in favor of the extension, but the shadowed fields and methods can be

accessed by means of narrowing. Overriding of methods is by means of a special

override clause.

To emulate this behavior, the shadow operator is introduced. A shadow

operator is placed implicitly between every pair of adjacent object types in a type

declaration.

A shadow B returns a type in which all fields and methods of B are accessible,

as well as all fields and methods of A that do not recur in B. This implies that
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if A and B have fields and methods in common, their values are taken from B.

The “hidden” fields and methods are accessible via narrow, or via assignment and

parameter passing.

The overrides clause of Modula-3 is considered syntactic sugar for an override

operator followed by a separate object-type constructor. This defines a translation

from Modula-3 syntax into the syntax of object-type expressions, and preserves

syntactic and semantic compatibility.

One minor incompatibility relates to pure virtuals. An uninitialized method is

considered a pure virtual, and is not initialized to nil. Modula-3 does not support

the notion of a pure virtual method. This change allows the definition of abstract

classes, and their interconnection by means of merge.

It is, however, a checked runtime error to invoke such a pure virtual method.

It is not an error to instantiate an abstract class. This is for compatibility with

Modula-3. It is conceivable that some programs might instantiate abstract classes,

but not invoke the nil methods of those classes. Such programs should continue

to run under the new language. Another reason for not enforcing a policy against

instantiating abstract classes is that syntax changes would be needed to detect this

across modules in some cases.

6.4 Assessing Modula-π

Applying the framework to a realistic programming language teaches valuable

lessons. First, support for the functionality of name-based typing is possible in the

context of structural typing, using Modula-3’s concept of brands. Second, a way of

supporting abstract data types has been developed. The technique used does not

have the same formal foundation as the original Jigsaw framework, but it can be

used in a practical setting.

Evaluating Modula-π against the modularity criteria of Chapter 2 shows that

it is still not a completely modular programming language. Nesting of object

types is not supported, and modularity operations have not been applied to the

language’s modules. Modula-π also retains some of the deficiencies of Modula-3.
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For example, though structural typing is used, it is defined in such a way that

multiple implementations of the same protocol yield distinct types. This situation

is similar to that of object-oriented languages that employ name-based typing. It

is tempting to forego compatibility on this point.

The measures described in section 6.3.4 make Modula-π syntactically and se-

mantically compatible with Modula-3. The issue of pragmatic compatibility has

not yet been addressed. The key requirement for pragmatic compatibility is an

implementation strategy for the new language that is competitive with existing

implementation techniques. The following chapter discusses such a strategy.
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type Person =
object name: string
methods display() := displayPerson
end;

type Graduate = Person
object degree: string
overrides display := displayGraduate
end;

procedure displayPerson(self: Person) =
begin

self.name.display();
end displayPerson;

procedure displayGraduate(self: Graduate) =
begin

Person.display(self);
self.degree.display()

end displayGraduate;

Figure 6.1. Modula-3 object types

root <: refany
untraced root <: address
null <: T object ... end <: T

Figure 6.2. Modula-3 subtyping rules for object types.

T1 <: T2
T3 <: T4

T5 = T1 merge T3

Figure 6.3. Difficulty with merge and abstract data types.
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object . . . end <: root. All object types are subtypes of root.
T1 merge T2 <: T1
T1 merge T2 <: T2
T1 override T2 <: T1
T1 override T2 <: T2
T1 show T2 <: T1
T1 show T2 <: T2
T1 shadow T2 <: T1
T1 shadow T2 <: T2
T project a,b,c ... <: T
T restrict a <: T
T rename a as b <: T
T copy m as n <: T
object ... methods ... m(...) := p ... end copy m as n <: object methods

n(...) := p end

Figure 6.4. Modula-π object type subtyping



CHAPTER 7

IMPLEMENTATION

Theorists need not bother: The European Common Market already
has a glut of butter, milk, wine, and theorems. Andy Tanenbaum

A major factor in the success of any piece of software is its performance. The

most elegant design may be virtually ignored unless it can be used effectively.

Conversely, efficiency can compensate for almost any other weakness in a software

system. The time has come to face the issue of implementation.

Most of this chapter is devoted to the presentation of a pragmatic and highly

efficient implementation technique for the language Modula-π discussed in Chapter

6.

The implementation is efficient enough to fit into a practical programming

language like Modula-3. Modula-3 restricts subtyping by making it dependent

on the order in which attributes are specified, and on the boundaries between

constituent object types. These restrictions, coupled with the fact that Jigsaw

modules never have any free variables, lead to an implementation based upon a

straightforward extension of standard dispatch table techniques.

This dissertation presents no new techniques for implementing interface-based

type systems such as Jigsaw’s. It has been noted in the literature [15, 31] that

interface-based type systems contribute little to efficient implementation, in con-

trast to more traditional type systems.

Operator-based inheritance was derived from Jigsaw by modifying the notion

of interface to reveal enough about the structure of modules for an efficient imple-

mentation. In Jigsaw itself, interfaces disclose no such information.

Traditionally, an implementation of a type system like Jigsaw’s might involve

searching for an attribute at run time, and cacheing its value. Even the best
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such schemes are not competitive with the approaches discussed in this chapter.

Recently, alternative schemes have been proposed [16]. While still not as efficient

as the scheme proposed below, the gap is smaller than with cache based lookup

techniques.

7.1 Implementation of Modula-π

This section describes the proposed implementation technique for operator-

based inheritance in Modula-π.

Implementations of single inheritance languages such as Modula-3 support the

notion of virtual procedures by associating with each class a table whose entries

are addresses of the class’ methods. Each instance of a class contains a reference

to the class method table. It is through this reference that the appropriate method

to be invoked on an instance is located.

Under multiple inheritance, the above technique must be modified, since the

superclasses of a class no longer share a common prefix. Offsets must be added

to an object, so that the appropriate subobjects are passed to methods defined

by superclasses. Since methods may be overridden, these offsets must be part of

the class’ method table. The offsets are different for every superclass, so a separate

subtable is created for each superclass. The size of the tables is linear in the number

of superclasses.

Operator-based inheritance incorporates a structural subtyping discipline. This

requires that the implementation completely preserve algebraic properties of oper-

ators. Traditional multiple inheritance schemes do not do this. A further problem

is that in operator-based inheritance, the number of supertypes of a type grows

quadratically with the number of component types. Using the traditional approach

would require quadratic table space, which is unacceptable. The solution is to

factor out the prefix offsets, which are statically known, and retain only the offsets

due to method redefinition in the tables. As a result, only one table per component

is created, and table space is linear in the number of components.
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The following two subsections review dispatch table based implementation tech-

niques for single and multiple inheritance, respectively. Subsection 7.1.3 discusses

the basic implementation of object types and binary operators upon them. Subsec-

tion 7.1.4 discusses the treatment of pure virtuals. Subsection 7.1.5 discusses the

implementation of unary operators, while subsection 7.1.6 discusses operators not

included in Modula-π. Subsection 7.1.7 briefly discusses various other implementa-

tion issues, such as garbage collecting, dynamic type checking and the like.

7.1.1 Implementing Single Inheritance

In single inheritance, every class has a unique superclass. A class has the form

Cnew = Cold∆, where Cold is the superclass, and ∆ represents the additions and

changes given by the new class. An instance of Cnew is represented by concatenating

the representation of the fields added by ∆ to the representation of an instance of

Cold. It follows that every class shares a common prefix with all of its subclasses.

It is therefore possible to compile code acting upon a statically known class, based

on its known structure. This structure will be repeated in all subclasses, making

the code reusable by the subclasses.

Virtual methods introduce a complication, since the exact method to be invoked

is no longer statically known when code is compiled. The solution is to have every

instance point at a method table (henceforth referred to as an mtbl). Each entry

in the table contains the address of a method. Calls to a method become indirect

calls, via a fixed entry in the mtbl. There is a table for each class. The table for

Cnew is created by copying the table for Cold, and appending entries for any new

methods. If Cnew overrides previously defined methods, the appropriate entries in

the table are changed accordingly. Again, the structure of a class’ table is a shared

prefix of the tables of all its subclasses. The size of a class’ table is linear in the

size of components and deltas:

tablesize(C0 ∆1 . . .∆n) = tablesize(C0) + Σn
i=1tablesize(∆i).
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7.1.2 Implementing Multiple Inheritance

Multiple inheritance can be implemented by a direct generalization of the tech-

nique described in the prior section. This technique has been used to implement

multiple inheritance in C++ [23], and was pioneered by Krogdahl [40]. Other

approaches are possible, but I focus on this one, since it forms the basis for my

implementation of operator-based inheritance.

Instances of a class that does not inherit from any other class (a base class), can

be represented by a record of their instance variables. To support virtual methods,

method tables are used, and each instance includes a pointer to a method table, as

explained above.

In general, however, a class has the form Cnew = C1C2 . . . Cn∆, where the

Ci are parents of Cnew. Instances of Cnew are represented by concatenating the

representations of instances of C1 . . . Cn with the representation of the fields added

by ∆. An instance of Cnew is thus composed of subobjects, where each subobject

corresponds to a particular superclass. Each subobject has its own pointer to a

suitable method table.

In this case, it is no longer true that a class’ representation is a prefix of the

representations of all of its subclasses. Each subobject begins at a different offset

from the beginning of the complete Cnew object. These offsets can be computed

statically, from the definition of Cnew. Figure 7.1 defines Offset(A,B) to be the

relative offset of a B subobject within an A object, if A is a subclass of B (written

A <: B). If B <: A, the function gives the negative offset from the A subobject to

the B object. Offset relates any two classes where one is a subclass of the other.

In any other case, it is undefined.

When a method f of Cnew invokes a method g of some superclass Ci, an offset

must be added to the beginning of the object, so that g operates on the correct

subobject.

Virtuals once again complicate matters. When a virtual method is redefined by

a subclass, the new definition may require access to all attributes of the subclass,

and not only to the attributes of the superclass that originally defined it. As a
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result, the offset required when invoking such a method may be changed when a

class is inherited from. The offset, like the identity of the virtual function itself, is

an attribute of the actual class of the object, and must be available at run time.

Typically, the offset is stored in the method table, alongside the address of the

virtual method. When a virtual method is invoked, the offset from the table is

added to the address of the instance, before it is passed to the method.

There is one further complication. A redefined method may be invoked from

the superclass Ci or from Cnew. The offset, in each case, is different. As a result, an

additional table is generated for Cnew. This table is constructed by concatenating

all the method tables of Cj, 1 ≤ j ≤ n and the table for ∆, and resetting the offset

fields as needed. Space can be saved, by realizing that C1 does share a common

prefix with Cnew, and that ∆ will not be used independently of Cnew. These tables

need not be duplicated, and are best collapsed into the table for Cnew.

For a class C = C1 . . . Cn∆, the table space required is 2Σn
i=1tablesize(Ci) −

tablesize(C1) + tablesize(∆). It is therefore linear in the size of the components,

and always less than twice the sum of the component sizes.

7.1.3 Basic Implementation of Operator-based Inheritance

This section is divided into three parts. First, section 7.1.3.1 illustrates why the

technique used above to implement multiple inheritance is not directly applicable

to operator-based inheritance. Then, the implementation techniques for primitive

and composite object types are demonstrated.

7.1.3.1 Problems with standard techniques

The fundamental difficulty in implementing operator-based inheritance stems

from the interaction between structural subtyping and the algebraic properties of

the merge and override operators.

Consider the class definitions of Figure 7.2. Expanding the definitions of all

names (as dictated by structural typing), one finds that by associativity, E = F =

H. This equivalence dictates that all three classes have the same type, so that they
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can be used interchangeably. This in turn requires that all three have the same

representation. However, using the techniques of section 7.1.2, these three classes

have different representations.

If name-based typing were used, E would be a subtype of D,C,A and B (but not

G), F would be a subtype of D,A and B (but not C), and H would be a subtype of

G,D,A, and B (but not C), and the classes E,F and H would not be in any subtyping

relationship. In this case, E,F and H would have to behave the same under attribute

accesses (they represent equivalent values, by associativity), but that would not

necessitate identical representations, since these classes are not equivalent in the

eyes of the type system.

A requirement for an implementation of operator-based inheritance is that the

algebraic properties of operations be preserved when the operations are performed

by the compiler upon the representations of object types and objects.

The system Stroustrup uses is not associative, but can be adjusted to be so.

The essence of the Krogdahl-Stroustrup approach is to generate a table for every

superclass (including the class being defined), but optimize so that superclasses

sharing a common prefix share the same table. With Modula-π’s definition of

subtyping, this generates a table for every suffix of C = C1C2 . . . Cn, resulting in

tables for C1 . . . Cn, C2 . . . Cn, . . . , Cn−1Cn, Cn. The size of these tables is
n× tablesize(Cn) + (n− 1)× tablesize(Cn−1) + . . .+ 1× tablesize(C1) =

Σn
i=1(i× tablesize(Ci)) = n(n+1)

2
× tablesize(Ci)

where tablesize(Ci) represents the weighted average table size. This is still unac-

ceptable. Table size for a class must be linear in the sizes of its components.

Linear table size can be achieved if tables of component classes appear only once

in a compound class’ table. This, in turn, requires that tables be independent of

the prefix of the class. If the prefix offset is statically incorporated in every call,

the table offset fields only need to include the changes introduced by overriding

methods, which are relative, not absolute. The details of this technique appear in

the following subsections, which give an approach to implementation based upon

the following inductive definition of object types.

A object type may take one of
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Offset(C,Ci . . . Cj) =
−Offset(Ci . . . Cj, C) =
Σi−1

k=1Size(Ck) where C = C1 . . . Cn, 1 ≤ i ≤ j ≤ n.

Figure 7.1. The Offset function.

type A = object a: integer methods Ma1():= Pa1 end;
B = object b: integer methods Mb1():= Pb1 end;
C = A B;
D = object d: integer methods Md1():= Pd1 end;
E = D C;
F = D A B;
G = D A;
H = G B;

Figure 7.2. Associativity

Otype = object fieldlist methods methodlist end |
Otype1 Otype2 |
Otype1 merge Otype2 |
Otype1 override Otype2 |
Otype1 show Otype2 |
Otype restrict label |
Otype project labelList |
Otype copy label1 as label2 |
Otype rename label1 as label2.

Figure 7.3. Constructors of object types
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the forms given in Figure 7.3. Object types of the first form are known as

primitive object types since they contain no other object types as components.

Object types of the other forms are called composite object types. Note that the first

composite form is actually a shorthand for Otype1 shadow Otype2, introduced for

syntactic compatibility, as discussed in the previous chapter (section 6.3.4). The

next two subsections show how to represent primitive and composite object types.

7.1.3.2 Implementing Primitive Object Types

Instances of an object type of the form

type T = object f1 . . . fn methods m1 . . . mk end

are each represented by a header word, followed by storage for the fields. The

header word points to a method table. There is one mtbl for every object type.

Each entry in the mtbl corresponds to one of the methods mi, 1 ≤ i ≤ k. There are

two fields per entry - the address of the procedure implementing the method, and

an offset field. All address fields are set to the address of the appropriate method

value. Offset fields are usually, but not always, set to zero.

If aT is an instance of class T , an invocation of aT.mi is compiled into an indirect

procedure call, using a statically determined entry in the mtbl. The address of aT

is added to the offset stored in the same entry in the mtbl, and passed as the first

parameter to the procedure. This is the same procedure used in [23].

A simple example is the class A in Figure 7.4, whose layout is shown in Figure

7.5 (Note that the method names shown in the figure are for expository purposes

only; they are not present in the physical implementation).

7.1.3.3 Implementing Object Type Composition

The most involved operations on object types are those that compose object

types, i.e., the merge, shadow and override operations. Apart from typechecking,

merge is just a special case of override. Similarly, shadow is implemented

just like merge. This presentation therefore focuses on the override operation.

Everything said applies to the merge and shadow operations as well.
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When composing two object types, as in

type C = A override B

objects of class C are represented by the concatenation of the A and B object

representations, in that order.

As with ordinary multiple inheritance, the mtbl contains an offset field. As

indicated above, the strategy is to separate the offset into two components - the

static offset, which is inserted into any code referencing C objects, and the dynamic

offset, which is stored in the mtbl.

The static offset is defined as :

StaticOffset( object f1 . . . fn methods m1 . . .mk end ,mi) = 0, 1 ≤ i ≤ k

StaticOffset(A override B,m) = Size(A)+StaticOffset(B,m) if m is declared in

B else StaticOffset(A,m)

StaticOffset(C,m) is undefined if m is not declared in C. This poses no problem,

since m cannot be referenced by C objects.

The dynamic offset will vary for each mtbl entry for m. A class C has an mtbl

entry for m for every primitive component object type S :> C that references m.

That entry is referred to as mtbl(C, S,m).

Let m be a method defined by some class C. Define defaultValue(C,m) to be

the default value of m for class C, and let defaultClass(C,m) denote the class of

the first parameter of defaultValue(C,m).

If C <: S and mi is a method referenced by S, the offset field of mi for S in C

is defined as shown in Figure 7.6.

References to methods of C are compiled as calls to procedures stored at par-

ticular entries in the C object’s mtbl - that is, each method corresponds to a fixed

offset from the C object’s mtbl pointer, which is stored in the object. When such a

method, m, is called, its first parameter (self) is the address of the C object, plus

the offset for the subobject that declared it (StaticOffset(C,m)), plus the offset

stored in the method’s entry in the mtbl (mtbl(C,C,m)). This ensures that a B

method is called with a self object corresponding to the B part of C. The extra

offset from the mtbl ensures that if the method is overridden later, an appropriate
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adjustment is made so that the overriding method gets the correct self pointer.

This same technique can be used if a method is overridden at object creation time.

Figures 7.7 and 7.5 show several object types, and the layout for their instances,

respectively.

This example shows the use of an anonymous object type, a object type which

has not been named, but is nevertheless used as a component of a composite object

type. In D, an anonymous object type defines field f3 and method m3. Notice that

defaultClass(D,m3) = A, and that the offset field for m3 in the anonymous object

type’s subtable reflects this. This is the only case where a primitive object type

will have a nonzero offset in its mtbl.

7.1.4 Pure Virtuals

A pure virtual method of a class C is a method that is declared, but given no

definition (not even nil), the intent being that definitions may be supplied by other

classes that are composed with C.

The above approach handles pure virtual methods as well. Note that if m is

pure virtual in C, defaultValue(C,m) is undefined, and so are defaultClass(C,m)

and mtbl(C, S,m). This is of no consequence, since both the method value and the

offset stored in the mtbl will never be used, since C must not be instantiated. What

is important is that StaticOffset(C,m) be defined. The original definition remains

valid for pure virtuals.

In operator based inheritance, we have the unusual situation that a pure virtual

definition may be supplied by either of the object types being combined. Contrast

this with the asymmetric situation in conventional object-oriented languages, where

only the modification may provide such a definition. If the actual method used

comes from the modified class, a negative offset is used. Figure 7.8 gives examples.

The corresponding layouts are given in Figure 7.9. The symbol Φ denotes an

undefined offset value.

The use of negative offsets is also useful when working with anonymous object

types (see section 7.1.3.3 above).
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7.1.5 Other Operations

• Restrict and Project. The appropriate entries in the mtbl (those being

made pure virtual) are nullified. The main effect of these operations is through

the type system.

• Copy As. This operation has the effect of adding a new method to an

object type. This is easily implemented by extending the method table with

an additional entry for the extra operation. The contents of this entry are

identical to those of the entry for the copied method. Of course, ifa the copied

method is overridden, the entry for the new method will remain unchanged,

and therefore available.

• Rename As. Renaming does not have any influence on a class’ representa-

tion. Only the compiler’s symbol tables are aware of the difference.

• Show. This operator has no effect except for typing.

7.1.6 Jigsaw Operations Not in Modula-π

Freeze operations are fairly redundant in Modula-π (see Chapter 6). However,

they could easily be added. The freeze operation has no impact on the representa-

tion of a class. However, if a method has been frozen, it may be possible to generate

code that uses it as an in-line function.

Hide and show operations are not needed, as Modula has its own encapsulation

facilities. Furthermore, they do not fit in well with the notion that subobject

boundaries are significant for typing.
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7.1.7 Additional Details

There are many additional details that must be handled, including:

1. Assignment. Assigning an instance of class C to a variable of class S :> C,

involves adding Offset(C, S) to the address of the instance and assigning the

result to the variable. The opposite case is when S <: C. This cannot be

shown to be correct statically. However, Modula allows this, and generates a

dynamic check to verify the correctness of the code. The offset is added, as

before. The implementation of the dynamic check is discussed below.

2. Dynamic typechecking. In Modula-3, dynamic typechecks may be generated

implicitly in some situations, or explicitly by the user using the constructs

istype, narrow and typecase. The condition tested is whether one type

is a subtype of another. All solutions discussed below associate a typecode

with each distinct object type, which may be stored in the first word of each

subobject. This typecode is also needed to support the typecode expression

of Modula-3.

For single inheritance, a dynamic typecheck may be implemented in constant

time and linear space [11]. Under the new subtyping rules, this is no longer

possible. It is possible to determine whether one type is a subtype of another

in linear time and space, for instance by maintaining a list of each object

type’s supertypes, and testing recursively against this list. This is not an

appealing option, since dynamic tests must be fast (especially since some are

implicit).

Alternately, a table, whose size is the square of the number of types in the

program, could explicitly state if any type is a subtype of any other. This takes

constant time, but quadratic space (though each entry only occupies a single

bit). For most programs, the overhead would be acceptable. A program with

a thousand object types would require a million bits for table space. Given

that a program with that many object types is clearly a substantial one, the
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overhead of 120 kilobytes of storage is not unreasonable. Still, reliance on a

quadratic algorithm is worrisome.

A third option is described in [2]. A compressed transitive closure of the

subtype relation is maintained. This structure allows testing in at worst

O(logn) time, but in practice gives constant time performance.

3. Garbage Collection. Each subobject should have a pointer to the beginning

of the entire object. This is needed, because there may very well be pointers

into objects (i.e., references to subobjects) while no pointer to the object as

a whole exists.

4. Separate Compilation. The implementation scheme discussed above relies on

knowledge of the size of objects. If the object type is a (partially) opaque type,

its size is not known at compile time. Nevertheless, offsets need to put into

code, and into tables, while the size of subobjects of opaque types is unknown.

These offsets must be fixed at link time. If combinations of offsets need to be

computed, and the linker cannot do this, then some initialization code might

be needed. This is not a new problem; it already exists in Modula-3.

This concludes the discussion of operator-based inheritance and its implemen-

tation.
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type A = object f1: integer methods m1() := p1, m2() := p2 end;

procedure p1(anA:A);
procedure p2(anA:A);

Figure 7.4. A primitive object type
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anA

-A mtbl ptr

f1: integer (4 bytes)

A mtbl

m1 addr(p1) 0

m2 addr(p2) 0

aB

-B mtbl ptr

f2: real (4 bytes)

B mtbl

m1 addr(p1’) 0

aC

-

-

A mtbl ptr

f1: integer (4 bytes)

C mtbl

m1 addr(p1’) 8

m2 addr(p2) 0

B mtbl ptr

f2: real (4 bytes)

m1 addr(p1’) 0

aD

-

-

-

Anonymous mtbl ptr

f3: char (1 byte)

A mtbl ptr

f1: integer (4 bytes)

D mtbl

m3 addr(p3) 5

m1 addr(p1’) 8

m2 addr(p2) 0

B mtbl ptr

f2: real (4 bytes)

m1 addr(p1’) 0

Figure 7.5. Layout of primitive and composite object types

mtbl(C, S,mi).offset=
Offset(C,defaultClass(C,mi))−Offset(C, S)−StaticOffset(S,mi).

Figure 7.6. Offset value in the mtbl.
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B = object f2: real methods m1() := p1’ end
C = A override B
D = object f3: char methods m3() := p3 end C

procedure p1’(aB:B)
procedure p3(anA:A)

Figure 7.7. Several composite object types

E = object methods m1() end
F = E override B (* Pure virtual given value by modifying class *)
G = B override E (* Pure virtual given value by modified class *)
H = object methods m1(), m4() := p4 end
I = E override H (* Two pure virtuals combine *)

procedure p4(anH:H)

Figure 7.8. Examples of pure virtual methods.
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anE

-E mtbl ptr

E mtbl

m1 nil Φ

anF

-

-

E mtbl ptr

F mtbl

m1 addr(p1’) 4

B mtbl ptr

f2: real (4 bytes)

m1 addr(p1’) 0

aG

-

-

E mtbl ptr

G mtbl

m1 addr(p1’) -8

B mtbl ptr

f2: real (4 bytes)

m1 addr(p1’) 0

anH

-H mtbl ptr

H mtbl

m1 nil Φ

m4 addr(p4) 0

anI

-E mtbl ptr

H mtbl ptr -

I mtbl

m1 nil Φ

m1 nil Φ

m4 addr(p4) 0

Figure 7.9. Layout of classes with pure virtuals



CHAPTER 8

FINALE

How many good ideas can there really be? Luca Cardelli.

There is one remaining task: to summarize the the contributions of this research,

compare them with other work, and suggest directions for the future.

Section 8.1 surveys various studies related in some way to the research reported

on in this dissertation. Future work is discussed in section 8.2. Conclusions are

given in section 8.3.

8.1 Related Work

8.1.1 Jade

Jade is a module manipulation system based upon Emerald. In many ways,

Jade is Jigsaw’s closest relative. Emerald and Jade clearly distinguish subtyping

from inheritance, and support only the former. Jade rejects inheritance due to

the many difficulties it has traditionally raised, as described in Chapter 2. As

an alternative, Jade defines parameterized abstractions called components. Like

Jigsaw modules, components have no free variables, so they are “self-sufficient”

constructs. External dependencies are expressed using habitats, a compile time

parameterization mechanism. This is similar to the use of declarations in Jigsaw

for module interconnection. However, habitats support parameterization of com-

ponents but not inheritance. Modifications to components must be done either

manually or with environmental support. In [58], the idea of automating such

operations using “simple set theoretic operators” is suggested, but not explored.

The essential difference between such operators (if they were developed) and those
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of Jigsaw is that the bidirectional relationship between abstraction and parameter

characteristic of abstract classes is not available.

8.1.2 CommonObjects

The definitive study of inheritance with respect to encapsulation is [65], which

has been cited extensively in this dissertation. In conjunction with that study, Sny-

der developed an object-oriented LISP dialect called CommonObjects[63]. Com-

monObjects was the first object-oriented language that did not violate encap-

sulation. It also allowed the definition of mixins. However, the language was

dynamically typed, reflecting its LISP heritage. Though encapsulation is a key

aspect of modularity, it is not the only one. Other issues, such as hierarchy, were

not considered.

Mixins were recognized as an important programming idiom in [65] but were not

considered as a full fledged construct. CommonObjects employed a formulation of

inheritance called tree inheritance. The terminology reflects the operational, graph-

oriented approach to inheritance prevalent at the time the study was undertaken.

Despite the differences in terminology and outlook, tree inheritance is very similar

to mixin based inheritance. In both cases, ancestors of a class that are reachable by

multiple paths in the inheritance hierarchy are reflected multiple times in the class’

instances. However, in tree inheritance a class has multiple immediate ancestors,

and has direct access to all of them. Tree inheritance is therefore not a purely

linear approach, but rather, as its name implies, a tree structured one. Classes in

CommonObjects could be viewed as mixins with multiple arguments.

8.1.3 Mixins

This work grew out of an earlier study of mixin-based inheritance [6]. Some of

the limitations of mixin based inheritance have been addressed here. These include

the absence of fine-grain sharing, of renaming facilities and of a symmetric merge

operation.
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Until now, mixins have been modeled as parametric abstractions called wrap-

pers. Cook used an operator combining a generator and a wrapper in his composi-

tional semantics of inheritance [17]. This operator was also used by Hense [28]. In

[6], the override operation was defined as a binary operation on wrappers, enabling

composition of mixins. Here, an alternate formulation of wrappers as functions

from generators to generators has been given. The main purpose of wrappers was

to allow access to overridden definitions. The required functionality can be achieved

using an explicit operator for this purpose. This allows the use of generators instead

of wrappers, simplifying definitions. This reflects the strategy of simplifying the

structure and pushing more functionality into the operator set.

8.1.4 Generator Operations

Many of the operators presented here were first proposed by Cook in [17]. There,

a general mechanism for deriving generator operations from record operations was

described. However, the operators defined by Cook were used to illustrate the

principle of manipulating self-reference by means of generators. In modeling pro-

gramming language constructs, more elaborate operators were used. In particular,

it was necessary to introduce wrappers, as discussed in section 5.1.3.

The novelty here is in providing a comprehensive suite of operations, and making

them explicit linguistic constructs. In addition, the uniform use of generators to

model all definitional structures is new. The operator suite also includes new

operations (namely hide, show, freeze, freeze-except and copy-as).

8.1.5 Mitchell

Mitchell, in [53], presented an extension to the ML module system that is in

some ways similar to this work. Mitchell also chose to incorporate inheritance into

a module language, an extension of the ML module system [44]. Some similar

operations are supported, embedded in a more conventional syntax. Underlying

both systems are denotational models involving the manipulation of self-reference,

and typing based on bounded quantification. There are many differences, however.
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Central to this thesis is the notion that inheritance itself can be used as a

modularity mechanism. Inheritance is an essential part of the module language,

“gluing” modules together by merging self-reference. Such a formulation of in-

heritance must preserve encapsulation. This contrasts with Mitchell’s view of

inheritance as “a mechanism for using one declaration in writing another.” Even

though inheritance is part of the module system, it is not essential to it. Instead, the

ML notions of structures and functors are used to define and interconnect modules.

Some of the inheritance constructs defined in [53] violate encapsulation (viz. copy

except, copy only). These constructs inherently require knowledge of the internal

structure of the “parent” module.

A consequence of the semantics of copy except, copy only is that separate

compilation is compromised. A parent module must always be compiled before its

use, and any change to it requires recompilation of its heir modules [46]. Jigsaw

supports inheriting from separately compiled modules without restriction.

The approach presented in this dissertation has the benefits of simplicity and

modularity. It does not rely upon dependent sums or products, or on multiple

universes of types. It is explicitly formulated as a framework for manipulating

modules where all functionality is supported by operators. Making its structure

explicit facilitates applying the framework to a broad spectrum of languages. Lan-

guage designers may easily add or modify operations as necessary. An expression

based language also allows users to compose operations more freely.

The Jigsaw framework supports abstract classes and mixins.1 Mixins cannot

be expressed in the framework of [53], and there is no explicit support for abstract

classes (though the traditional device of giving dummy definitions for pure virtual

methods is always available, with its concomitant disadvantages).

On the other hand, Mitchell’s approach supports modules implementing ab-

stract data types. This allows for combining traditional algebraic (or higher or-

der) data types with object-oriented formulations. Jigsaw supports only the pure

object-oriented approach. It would be desirable to extend the framework with an

1Abstract classes are mentioned in [53], but only as substitutes for interfaces.
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analogous set of operators for abstract data types. However, there are technical

difficulties related to the typing of existential data types.

A related issue is the use of structural subtyping, in contrast to “name-based”

subtyping in [53]. Both forms are useful; here, the focus is on structural subtyping,

which is more appropriate between different modules or programs [11].

Finally, unlike [53], precise semantic definitions of all operations have been given.

8.2 Future Work

8.2.1 Name-based Typing

Jigsaw, as presently formulated, does not support name based typing. However,

this does not seem to present a serious difficulty. In Chapter 6, the brand mechanism

of Modula-3 was used to obtain the functionality of named types in a structural-type

setting. This is a generally applicable solution. Brands are viewed as parameters to

type constructors, and are components of a type’s structure [55]. The uniqueness

of brands can be enforced syntactically, as in Modula-3. Within a Jigsaw module,

a brand can be given by the user only once. When modules are combined, it is

necessary to guarantee that brands are unique across modules. In effect, the brands

introduced by a module are part of its interface, and may not be duplicated by other

modules. This can be checked when modules are combined.

An alternative is to provide an intrinsic notion of name-based typing in Jigsaw.

This could be done by adding types as components of interfaces and modules.

Formalizing this would mean that generators would become dependent products

and records dependent sums. The details of this (especially with respect to recursive

types) have not been studied carefully, however.

8.2.2 Abstract Data Types

Abstract data types are both more useful and more problematic than named

types. A formalization based on existentially quantified types is problematic,

because of type abstraction. In particular, creating new abstract data types by

combining the abstract types form two modules runs into the same difficulty that
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has arisen time and again in this dissertation - how to typecheck inheritance in the

presence of type abstraction. A rigorous definition of inheritance on ADTs is an

important and substantial research issue.

8.2.3 Formal Specification of Inheritable Modules

A primary motivation for Jigsaw is reusability. One of the possible side-effects

of increased reuse is an increased emphasis on formal specification and verification

of software components. The reason for this is economic in nature. The larger the

market for a component, the more feasible it is to invest in the expensive process

of formally verifying a software component. Conversely, users of “off-the-shelf”

components may begin to demand more precise specifications of the software they

purchase.

The preceding observations draw attention to a problem not yet addressed by

the formal methods community. While there is an abundance of work on specifying

how software behaves when used, there is a dearth of research into how to specify

how software behaves when inherited.

There is a need to specify how a class will respond when modified, which implies

knowledge of method interdependencies. In addition, if a revised method is changed,

even if it preserves the previous version’s specification, it may induce other changes

to the object’s state. It may be desirable to specify that certain methods do not

have any additional effects (a form of frame problem).

One reason that this problem has not yet come to the forefront of attention is

that in most programming languages, there is no way to inherit from a separately

compiled class or module. This implies that source code is always available, and

this source is the specification used to understand how the class will behave when

modified. An exception is Modula-3, where one can inherit from a separately com-

piled object type. Specifying how to do this is challenging, and is done informally,

in English. For some excellent examples, see [55, Chapter 6].

The semantic framework of Jigsaw may suggest a starting point of attacking this

problem. Traditional specification deals with the behavior of records with function
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valued attributes. The problem just posed may be thought of as specifying how

generators behave.

8.2.4 Prototypes

Jigsaw was originally designed to deal with inheritance among classes. Though

there are some differences, the framework can be carried over into the world of

delegation.

Typing of delegation raises the same acute problems that inheritance in any

polymorphic context does. Therefore, typechecking will be ignored here.

Assuming Jigsaw modules are first class entities, and Jigsaw operations are

executed at run time, the effect of say, a override operation is to produce a new

module, which contains copies of the two modules that were arguments to the

override operation, with the attributes of the dominant module overriding those

of the other module.

In contrast, no new object (module) is created under delegation. The delegating

object references the delegate. As a consequence, the state of the delegate is shared

with all its delegators.

The principle difference between Jigsaw’s semantics and those of a delegation

based language like SELF is that between copy semantics and reference semantics.

An equivalent conclusion is reached independently by Taivalsaari in [66].

Based on this insight, SELF style delegation can be supported with a suite

of inheritance operators. The description will have an uncomfortably operational

flavor, but remember, delegation is an inherently operational notion.

At this point, a single example will be shown, to give some insight. Deriving a

full denotational semantics of a modular form of delegation based on this insight

seems fairly straightforward.

o1 override o2 produces a new object, whose only function is to forward mes-

sages to o2, with a revised self (client). If the messages are not understood by o2,

they are forwarded to o1.
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The space of values being manipulated does not really consist of objects, but of

references to functions of type Filter, such that

Filter = Filterref →Msg → V alue

In other words, Filter’s are functions that take a reference to a Filter (repre-

senting self), a message, and produce a value. Filters are analogous to generators.

The conventional syntax o.m really stands for o(o)(m). In other words, a

message send in a delegation language really invokes a generator.

All operators can now be defined in a manner completely analogous to their

generator versions. The results are always references to Filter functions, which

perform the necessary manipulations upon self and filter messages as appropriate

before sending them to the original operands.

Implementation of a delegation based language along these lines is an interesting

variation on the Jigsaw framework, in which interface checking would be overridden

by true, generators replaced by Filters, and module operators redefined accordingly

(including dynamic interface checking).

8.2.5 Nested Modules Revisited

In Beta, nested classes can be virtual, as shown in section 3.1.3. The same

applies in Jigsaw. However, Jigsaw adopts a purely static type system, restrict-

ing subtyping (subinterfacing) on modules to type (interface) equivalence. Beta

supports subtyping on patterns, and relies on dynamic typechecks to guarantee

safety. This flexibility is what enables Beta to express mixins as shown in Chapter

3. Useful mixins are polymorphic class abstractions. In Jigsaw modules are treated

monomorphically. Similarly, Beta allows entire class hierarchies to be modified

by inheritance. This is not well supported in Jigsaw. Of course, Jigsaw supports

mixins more directly, as shown in section 4.2.9. Inheriting entire hierarchies seems

valuable however. If Jigsaw adopted dynamic typechecking to augment its type

system, this could be supported, though it would be costly.
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Another distinction is that Beta identifies classes and types. This has the

disadvantages mentioned in Chapter 2, but allows Beta to support type abstraction

using the same virtual pattern mechanism used for inheritance [49].

Nested modules in principle also support the notion of class variables found in

languages like Smalltalk. Class variables are variables shared by all instances of a

class. A module that nests another module inside it, can serve as a “factory” [19]

and produce initialized instances of the nested module. The surrounding module

serves as a repository of shared data among all instances of the nested module.

Again, module subtyping restricts the usefulness of such designs. A richer notion of

module subtyping would allow Jigsaw to support these highly expressive constructs.

Use of dynamic typing, as in Beta is one option, but a costly one. In [18] static

type systems that address some of these problems are discusses.

8.2.6 Process Calculi

Object orientation presents a natural model of concurrency, and concurrent

object-oriented programming has been the focus of considerable attention [75].

The operator based approach advocated in Jigsaw seems to fit well with process

calculus models of concurrency in the style of CCS [61]. Nierstrasz has investigated

such calculi in an object-oriented context [57]. More recent work by Nierstrasz

investigates the integration of process and λ calculi [56]. In [56], it is shown how to

express the fixpoint operator in such an integrated calculus. It should therefore be

possible to integrate Jigsaw style generator definitions into this framework. This

leads toward the exciting possibility of an expression based language for composing

modular, concurrent object definitions.

8.3 Conclusion

This dissertation has provided a framework for modularity in programming

languages. In this framework, known as Jigsaw, inheritance is understood to

be an essential linguistic mechanism for module manipulation. The framework
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is unusually expressive, theoretically sound, efficiently implementable and language

independent.

Specifically, the dissertation has made the following contributions:

• Inheritance has been characterized as a module manipulation mechanism.

• The notion of mixins has been identified as an important abstraction miss-

ing from current object-oriented programming languages, in contravention of

established principles of language design.

• For the first time, a broad array of linguistic features has been integrated in

a cohesive manner, including multiple inheritance, mixins, encapsulation and

strong typing.

• A clean, modular semantics for multiple inheritance has been developed.

• A linguistic framework based directly on the semantics has been constructed.

This serves as a framework for modular language specification, and as a spec-

ification of a framework for modular language implementation, independent

of a particular computational paradigm.

• The applicability of the framework to existing programming languages has

been demonstrated.

• An efficient implementation scheme for the constructs introduced has been

described.

Beyond the specific contributions, the dissertation demonstrates once again the

importance of denotational semantics to programming language design.



REFERENCES

[1] Agha, G. Actors: A Model of Concurrent Computing in Distributed Systems.
MIT Press, Cambridge, Massachusetts, 1986.

[2] Agrawal, R., DeMichiel, L. G., and Lindsay, B. G. Static type
checking of multi-methods. In Proc. of the ACM Conf. on Object-Oriented
Programming, Systems, Languages and Applications (Oct. 1991), pp. 113–127.

[3] America, P. A parallel object-oriented language with inheritance and
subtyping. In Proc. of the Joint ACM Conf. on Object-Oriented Program-
ming, Systems, Languages and Applications and the European Conference on
Object-Oriented Programming (Oct. 1990), pp. 161–168.

[4] Bentley, J. L. More Programming Pearls. Addison-Wesley, Reading,
Massachusetts, 1988.

[5] Borning, A. H. Classes versus prototypes in object-oriented languages. In
ACM/IEEE Fall Joint Computer Conference (1986).

[6] Bracha, G., and Cook, W. Mixin-based inheritance. In Proc. of the
Joint ACM Conf. on Object-Oriented Programming, Systems, Languages and
Applications and the European Conference on Object-Oriented Programming
(Oct. 1990).

[7] Canning, P., Cook, W., Hill, W., Mitchell, J., and Olthoff, W.
F-bounded polymorphism for object-oriented programming. In Proc. of Conf.
on Functional Programming Languages and Computer Architecture (1989),
pp. 273–280.

[8] Canning, P., Cook, W., Hill, W., and Olthoff, W. Interfaces for
strongly-typed object-oriented programming. In Proc. of the ACM Conf. on
Object-Oriented Programming, Systems, Languages and Applications (1989),
pp. 457–467.

[9] Cardelli, L. A semantics of multiple inheritance. In Semantics of Data
Types (1984), vol. 173 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 51–68.

[10] Cardelli, L., Donahue, J., Glassman, L., Jordan, M., Kalsow,
B., and Nelson, G. Modula-3 report (revised). Tech. Rep. 52, Digital
Equipment Corporation Systems Research Center, Dec. 1989.



135

[11] Cardelli, L., Donahue, J., Jordan, M., Kalsow, B., and Nelson,
G. The Modula-3 type system. In Proc. of the ACM Symp. on Principles of
Programming Languages (Jan. 1989), Association for Computing Machinery,
pp. 202–212.

[12] Cardelli, L., and Mitchell, J. C. Operations on records. Tech. Rep. 48,
Digital Equipment Corporation Systems Research Center, Aug. 1989.

[13] Cardelli, L., and Wegner, P. On understanding types, data abstraction,
and polymorphism. Computing Surveys 17, 4 (1985), 471–522.

[14] Cargill, T. Controversy: The case against multiple inheritance in C++. In
Usenix Winter Conference (Jan. 1991).

[15] Chambers, C., and Ungar, D. Making pure object-oriented languages
practical. In Proc. of the ACM Conf. on Object-Oriented Programming,
Systems, Languages and Applications (Oct. 1991), pp. 1–15.

[16] Connor, R., Dearle, A., Morrison, R., and Brown, A. An object
addressing mechanism for statically typed languages with multiple inheritance.
In Proc. of the Joint ACM Conf. on Object-Oriented Programming, Systems,
Languages and Applications and the European Conference on Object-Oriented
Programming (Oct. 1989), pp. 279–285.

[17] Cook, W. A Denotational Semantics of Inheritance. PhD thesis, Brown
University, 1989.

[18] Cook, W., Hill, W., and Canning, P. Inheritance is not subtyping.
In Proc. of the ACM Symp. on Principles of Programming Languages (1990),
pp. 125–135.

[19] Cox, B. J., and Novobilski, A. Object-oriented Programming: An Evolu-
tionary Approach, 2nd ed. Addison-Wesley, Reading, Massachusetts, 1991.

[20] Dahl, O., and Nygaard, K. Simula: An Algol-based simulation language.
Communications of the ACM 9 (1966), 671–678.

[21] Department of Defense. Reference Manual for the Ada Programming
Language, 1983. ANSI/MIL-STD-1815A.

[22] Ducournau, R., and Habib, M. On some algorithms for multiple inher-
itance in object-oriented programming. In European Conference on Object-
Oriented Programming (1987), pp. 243–252.

[23] Ellis, M. A., and Stroustrup, B. The Annotated C++ Reference
Manual. Addison-Wesley, Reading, Massachusetts, 1990.

[24] Goldberg, A., and Robson, D. Smalltalk-80: the Language and Its
Implementation. Addison-Wesley, 1983.



136

[25] Guimaraes, N. Building generic user interface tools: an experience with
multiple inheritance. In Proc. of the ACM Conf. on Object-Oriented Program-
ming, Systems, Languages and Applications (Oct. 1991), pp. 89–96.

[26] Harper, R., MacQueen, D., and Milner, R. Standard ML. Internal
Report ECS-LFCS-86-2, Edinburgh University, Mar. 1986.

[27] Harper, R., and Pierce, B. A record calculus based on symmetric
concatenation. In Proc. of the ACM Symp. on Principles of Programming
Languages (Jan. 1991), pp. 131–142.

[28] Hense, A. V. Denotational semantics of an object oriented programming
language with explicit wrappers. Tech. Rep. A 11/90, Fachbereich Informatik,
Universitaet des Saarlandes, Nov. 1990.

[29] Hense, A. V. Wrapper semantics of an object oriented programming lan-
guage with state. Tech. Rep. A 14/90, Fachbereich Informatik, Universitaet
des Saarlandes, July 1990.

[30] Hense, A. V. Explicit wrappers and multiple inheritance, Feb. 1991. Un-
published manuscript, Fachbereich Informatik, Universitaet des Saarlandes.

[31] Hölzle, U. Why static typing is not important for efficiency, or why you
shouldn’t be afraid to separate interface from implementation. Position paper
in ECOOP’91 workshop on Types, Inheritance and Assignments, J. Palsberg
and M. Schwartzbach, editors.

[32] Jensen, K., and Wirth, N. Pascal User Manual and Report, second ed.
Springer-Verlag, 1978.

[33] Johnson, R. E., and Russo, V. F. Reusing object-oriented designs. Tech.
Rep. UIUCDCS 91-1696, University of Illinois at Urbana-Champagne, May
1991.

[34] Kamin, S. Inheritance in Smalltalk-80: A denotational definition. In Proc.
of the ACM Symp. on Principles of Programming Languages. Association for
Computing Machinery, 1988, pp. 80–87.

[35] Keene, S. E. Object-Oriented Programming in Common Lisp. Addison-
Wesley, 1989.

[36] Kernighan, B. W., and Ritchie, D. M. The C Programming Language.
Prentice-Hall, Englewood Cliffs, N.J., 1978.

[37] Kiczales, G., des Rivieres, J., and Bobrow, D. G. The Art of the
Metaobject Protocol. MIT Press, Cambridge, Massachusetts, 1991.

[38] Kristensen, B. B., Madsen, O. L., Møller-Pedersen, B., and Ny-
gaard, K. The Beta Programming Language. In Research Directions in
Object-Oriented Programming. MIT Press, 1987, pp. 7–48.



137

[39] Kristensen, B. B., Madsen, O. L., Moller-Pederson, B., and
Nygaard, K. The Beta programming language – a Scandinavian approach
to object-oriented programming, Oct. 1989. OOPSLA Tutorial Notes.

[40] Krogdahl, S. Multiple inheritance in Simula-like languages. BIT 25 (1985),
318–326.

[41] Lieberman, H. Using Prototypical Objects to Implement Shared Behavior
in Object-Oriented Systems. In Proc. of the ACM Conf. on Object-Oriented
Programming, Systems, Languages and Applications (1986), pp. 214–223.

[42] Linton, M. A., Calder, P. R., and M.Vlissides, J. InterViews: A C++
graphical interface toolkit. Tech. Rep. CSL-TR-88-358, Stanford University,
July 1988.

[43] Liskov, B., and Guttag, J. Abstraction and Specification in Program
Design. MIT Press, Cambridge, Mass., 1986.

[44] MacQueen, D. Modules for Standard ML. In Proc. of the ACM Conf. on
Lisp and Functional Programming (Aug. 1984), pp. 198–207.

[45] Madany, P. W., Campbell, R. H., Russo, V. F., and Leyens, D. E.
A class hierarchy for building stream-oriented file systems. In European
Conference on Object-Oriented Programming (July 1989), S. Cook, Ed., British
Computer Society Workshop Series, Cambridge University Press, pp. 311–328.

[46] Madhav, N., September 1991. Personal communication.

[47] Madsen, O. L., November 1990. Personal communication.

[48] Madsen, O. L., Magnusson, B., and Moller-Pederson, B. Strong
typing of object-oriented languages revisited. In Proc. of the Joint ACM
Conf. on Object-Oriented Programming, Systems, Languages and Applications
and the European Conference on Object-Oriented Programming (Oct. 1990),
pp. 140–149.

[49] Madsen, O. L., and Moller-Pederson, B. Virtual classes, a powerful
mechanism in object-oriented programming. In Proc. of the ACM Conf. on
Object-Oriented Programming, Systems, Languages and Applications (Oct.
1989), pp. 397–406.

[50] Manna, Z. The Mathematical Theory of Computation. McGraw-Hill, 1974.

[51] Meyer, B. Object Oriented Software Construction. Prentice-Hall Interna-
tional, Hertfordshire, England, 1988.

[52] Milner, R., Tofte, M., and Harper, R. The Definition of Standard ML.
MIT Press, 1990.



138

[53] Mitchell, J., Meldal, S., and Madhav, N. An extension of Standard
ML modules with subtyping and inheritance. In Proc. of the ACM Symp. on
Principles of Programming Languages (Jan. 1991), pp. 270–278.

[54] Moon, D. A. Object-oriented programming with Flavors. In Proc. of
the ACM Conf. on Object-Oriented Programming, Systems, Languages and
Applications (1986), pp. 1–8.

[55] Nelson, G., Ed. Systems Programming with Modula-3. Prentice-Hall, 1991.

[56] Nierstrasz, O. Towards an object calculus. In ECOOP’91 Workshop on
Object-based Concurrent Computing (July 1991).

[57] Nierstrasz, O., and Papathomas, M. Viewing objects as patterns of
communicating agents. In Proc. of the Joint ACM Conf. on Object-Oriented
Programming, Systems, Languages and Applications and the European Con-
ference on Object-Oriented Programming (Oct. 1990), pp. 38–43.

[58] Raj, R. K., and Levy, H. M. A Compositional Model for Software
Reuse. In European Conference on Object-Oriented Programming (July 1989),
S. Cook, Ed., British Computer Society Workshop Series, Cambridge Univer-
sity Press, pp. 3–24.

[59] Reddy, U. S. Objects as closures: Abstract semantics of object-oriented
languages. In Proc. ACM Conf. on Lisp and Functional Programming (1988),
pp. 289–297.

[60] Remy, D. Typechecking records and variants in a natural extension to ML.
In Proc. of the ACM Symp. on Principles of Programming Languages (1989),
pp. 77–88.

[61] Robin Milner. Communication and Concurrency. Prentice-Hall Interna-
tional, Englewood Cliffs, New Jersey, 1989.

[62] Schaffert, C., Cooper, T., Bullis, B., Kilian, M., and Wilpolt, C.
An introduction to Trellis/Owl. In Proc. of the ACM Conf. on Object-Oriented
Programming, Systems, Languages and Applications (1986), pp. 9–16.

[63] Snyder, A. CommonObjects: An overview. SIGPLAN Notices 21, 10 (1986),
19–28.

[64] Snyder, A. Encapsulation and inheritance in object-oriented programming
languages. In Proc. of the ACM Conf. on Object-Oriented Programming,
Systems, Languages and Applications (1986), pp. 38–45.

[65] Snyder, A. Inheritance and the Development of Encapsulated Software
Components. In Research Directions in Object-Oriented Programming. MIT
Press, 1987, pp. 165–188.

[66] Taivalsaari, A. Towards a taxonomy of inheritance mechanisms in object-
oriented programming, September 1991. Licentiate thesis.



139

[67] Tennent, R. Principles of Programming Languages. Prentice-Hall, 1981.

[68] Ungar, D., Chambers, C., Chang, B.-W., and Hölzle, U. Parents
are shared parts of objects: Inheritance and encapsulation in SELF, 1990. In
The SELF papers, compiled by Urs Hölzle.

[69] Ungar, D., Chambers, C., Chang, B.-W., and Hölzle, U. The SELF
manual, version 1.0, July 1990.

[70] Vlissides, J., and Linton, M. Unidraw: A framework for building domain-
specific graphical editors. Tech. Rep. CSL-TR-89-380, Stanford University,
July 1989.

[71] Wand, M. Type inference for record concatenation and multiple inheritance.
In Proc. IEEE Symposium on Logic in Computer Science (1989), pp. 92–97.

[72] Wegner, P. The object-oriented classification paradigm. In Research
Directions in Object-Oriented Programming. MIT Press, 1987, pp. 479–560.

[73] Weinand, A., Gamma, E., and Marty, R. ET++ - an object-oriented
application framework in C++. In Proc. of the ACM Conf. on Object-Oriented
Programming, Systems, Languages and Applications (1988), pp. 46–57.

[74] Wirth, N. Programming in Modula-2. Springer-Verlag, 1983.

[75] Yonezawa, A., and Tokoro, M., Eds. Object-Oriented Concurrent Pro-
gramming. MIT Press, 1987.


