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Abstract

We describe the use and implementation of mixins [BC90] in the Animorphic
Smalltalk system, a high performance Smalltalk virtual machine and program-
ming environment. Mixins are the basic unit of implementation, and are directly
supported by the VM. At the language level, code can be defined either in mixins
or in classes, but classes are merely sugar for mixin definition and application.
The Strongtalk type system supports the optional static typechecking of mixins
in an encapsulated manner. Independent of typechecking, the resulting system
system substantially outperforms existing Smalltalk implementations.

1 Introduction

The concept of a mixin originates in the LISP community [Moo86], where it
referred to a class designed to operate with a variety of superclasses. LISP
mixins were classes that observed a programming convention that leveraged off
the Flavors/CLOS multiple inheritance linearization algorithms. Mixins were
not a language construct in Flavors or CLOS.

In [BC90] mixins were identified as a formal linguistic construct. In this
paper, we use the term mixin in the sense of [BC90] unless otherwise stated. A
mixin is an abstract subclass parameterized by its superclass.

Here we report on the design and implementation of mixins in the context of

a high performance Smalltalk, the Animorphic Smalltalk system. While various
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authors have studied mixins from a programming language point of view, the

work reported here is distinguished by:

• A high performance implementation.

• A complete reflective API and programming environment, including an

optional, incremental typechecker.

In the Animorphic VM, mixins rather than classes are the basic unit of

implementation. This carries no performance penalty; on the contrary, the An-

imorphic VM outperforms other Smalltalk implemementations by a substantial

factor.

At the language level, code can be defined either in mixins or in classes.

However, all program code is stored in mixins internally. A class is simply

sugar for a corresponding mixin definition and the application of that mixin to

a particular superclass.

The system includes the optional Strongtalk type system that supports the

static typechecking of mixin definition and use in an encapsulated manner.

Smalltalk implementations usually comprise not only a run-time system, but

a class library and interactive development environment (IDE). This is true of

the Animorphic system as well. A complete blue-book [GR83] class library is

included. Mixins are used at key points in the library and the programming envi-

ronment supports the browsing of mixin declarations. Underlying the browsers

is a reflective API that provides access to mixins. Indeed, mixins are the basic

structure manipulated by this API.

The rest of the paper is structured as follows:

Section 2 discusses the basic programming model. Section 3 shows examples

of mixin usage. Section 4 discusses the (optional) typechecking of mixins. Sec-

tion 5 discusses interactions between mixins and reflection. Section 6 discusses

the implementation. Section 7 discusses trade offs in language design and com-

pares our approach to others. Section 8 briefly discusses the project’s status

and history. Finally we discuss our contributions and draw conclusions.

2 Basic Model

A mixin specifies a set of modifications (overrides and/or extensions) to be

applied to a superclass parameter. A mixin differs from an ordinary subclass

definition in that it abstracts over the identity of its superclass.

Mathematically, a mixin is a function that maps a class S to a subclass of

S with a particular class body.

Consider the following example 1:

mixin Comparable(G) {
1Smalltalk programmers will recognize this code is based on the standard library class

Magnitude. In the Animorphic system, Magnitude is defined as a class for compatibility, and
then used as a mixin as explained below.
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G subclass {
≤ that

ˆ (self == that) ‖ (self < that)

> that

ˆ that < self

≥ that

ˆ that ≤ self

}}

The mixin Comparable abstracts over an unspecified formal superclass G.

The code in the mixin assumes that the G implements a boolean valued method

< that implements the less-than relation. Comparable can be used at different

points in the subclass hierarchy, by invoking it on different actual superclasses,

much as one invokes a function at multiple points in a computation. This is

accomplished using �, the mixin invocation operator :

ComparablePoint = Comparable � Point

Number = Comparable � BasicNumber

The � operator takes a mixin M and a (super)class S, and produces a new

class that modifies its superclass S with the code defined in M . The mixin can

be invoked on various superclasses to derive different classes. We refer to the

resulting classes as mixin invocations. In all cases the source code of the mixin

is shared among all these mixin invocations, promoting modularity.

The view of mixins as functions is useful in understanding the properties of

mixins in our model. Here are some key points:

• We distinguish between mixins and classes, just as one distinguishes be-

tween functions and the values they take as arguments and produce as

results. A mixin is not a class; it must be invoked on an actual superclass

parameter to produce a class.

• Mixins do not affect the semantics of subclass construction or method

lookup. This should be expected, as mixins result from the direct appli-

cation of the principle of procedural abstraction to subclassing.

• A mixin may not be applicable to all classes, much as a function is not nec-

essarily defined for all inputs. A function may place specific requirements

on its actual parameters. Likewise, a mixin may place various require-

ments on the superclass. For example, a mixin may contain calls to super

methods. These must be defined for any actual superclass. The precise

constraints will depend on the subclassing rules of the language. Some

of the requirements a mixin imposes on its actual superclasses may be

expressed via type annotations. See section 4 for further discussion.

• A mixin can be composed with another mixin, to produce a composite

mixin , in a manner completely analogous to function composition. We

define mixin composition as follows: (M1 ∗M2) � S = M1 � (M2 � S).
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Every class implicitly defines a mixin whose body is identical to the class

body. In our system, we recognize this and allow mixins to be derived from

classes. A mixin derivation, written C mixin, denotes the mixin implicitly defined

by the class C.

Here is an example taken from the Animorphic UI library. Assume the class

Region represents a region on the screen. It is natural to have a class that groups

several Regions together into a single composite Region:

Region subclass CompositeRegion...

It is useful to think of this class as a collection of Regions. However, one can-

not usually inherit functionality from Collection since graphical widgets belong

to a separate hierarchy.

In order to reuse all of the functionality in the Collection class, we revise the

definition of CompositeRegion as follows:

(Collection mixin � Region) subclass CompositeRegion...

Now, the superclass of CompositeRegion is a mixin invocation Collection mixin � Region.

The mixin being invoked here is a mixin derivation Collection mixin. The derived

mixin operates exactly as if the functionality of the class Collection had instead

been given as an explicit mixin declaration.

Programmers may define code in the context of either a class or a mixin.

Defining code in classes is often advantageous because it is a familiar paradigm,

and because it is relatively concrete. On the other hand, defining mixins sup-

ports a focus on reuse.

In either case, the ability to use the new code of a class in other class

hierarchies is unaffected.

3 Examples of Usage

3.1 Example 1: Critical Section

Our first example is shown in figure 1. The figure is a screen shot of a mixin

browser on the mixin InstanceCritical. The InstanceCritical mixin expresses the

functionality of a critical section (monitor) . It has an instance variable, moni-

tor, representing the semaphore, with an associated access method. The mixin

includes a method critical: that accepts a closure as its argument and executes

it within the monitor.

The browser shows Strongtalk type signatures, enclosed in angle brackets,

for the instance variables and methods. In addition, in order to typecheck the

mixin declaration type information regarding potential superclasses is required

(see section 4.3.1 for further details). In this case, the mixin is applicable to any

class, that is, any subclass of Object. This is reflected at the top of the browser

window in the heading Mixin on Object.
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Figure 1: A mixin implementing a monitor

Without mixins, one might have to duplicate this functionality wherever it

was needed. Alternately, one could add this to class Object. However, with-

out specialized language support (e.g., as in the Java programming language

[GJSB00]), significant overhead is added to every object. Note that this design

does not preclude a similar optimization.

3.2 Example 2: I/O Streams

Consider the case of a stream that can perform both input and output. It

combines the functionality of an input stream and an output stream. Should

InputOutputStream be in the InputStream hierarchy or the OutputStreamHier-

archy? In either case, we will have to duplicate functionality from one of the

stream classes. We can avoid this problem if we use mixins for the input and

output streams.

The actual declaration of an I/O stream in the Animorphic system is

BasicOutputStream mixin � BasicReadStream subclass BasicReadWriteStream
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4 Typechecking

Mixins interact with the type system in several ways. Mixin declarations and

invocations must be typechecked. In addition, in a nominal type system, mixin

declarations affect the subtype relation. We now address each of these issues in

turn.

It is crucial that once a mixin declaration M has been type checked, in-

vocations of the mixin can be checked on the basis of the mixin’s interface,

without recourse to the mixin’s internals. In order to achieve this, it is impor-

tant to understand what the interface of a mixin is; this in turn depends on an

understanding of the concepts of mixin signature and class signature.

4.1 The Signature of a Class

Typechecking a class generally requires a comparison of the types of members

of the class to the types of corresponding members in the superclass. In type

systems that allow for typechecking a class without access to the source code of

the superclass, there is always a (usually implicit) class signature that provides

the information necessary to verify the typing constraints when inheriting from

a class.

Animorphic Smalltalk uses the Strongtalk [BG93, Bra96] type system. Types

in Strongtalk never expose private methods or variables of any kind. In con-

trast, a Strongtalk class signature includes the signatures and visibilities of all

methods and messages, and the types of all instance and class variables. The

class signature includes all inherited members. It follows that the class signa-

ture of a class C is entirely different from both the type of an instance of C,

and from the type C class, the type of the unique instance of C’s metaclass.

4.2 The Signature of a Mixin

A mixin signature encapsulates type information about the mixin, which is

needed to check its application to a concrete superclass. This amounts to the

declared signature of the formal superclass and types of all fields and methods

declared within the mixin itself.

A mixin that requires superclasses that conform to class signature S has S

as its domain. If, given a class with signature S, the mixin produces a class of

signature C, then C is the range of the mixin. The type of a mixin with domain

S and range C can be written as a function type on class signatures: S → C.

However, it is more convenient to represent it as pair (S, δ). Here, S is the

signature of the superclass, as before. δ is a class signature that only includes

information about the members declared by the mixin itself.

4.3 Typechecking a Mixin

Having reviewed the concepts of class signature and mixin signature, we now

proceed with a discussion of mixin typechecking. Mixin typechecking can be
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further subdivided into two parts: typechecking mixin declarations and type-

checking mixin invocations.

4.3.1 Typechecking Mixin Declarations

In order to typecheck a mixin declaration in isolation, it is necessary for the

mixin to declare the expected class signature of potential superclasses. In prac-

tice, this is done by naming a particular class. In figure 1, the class Object is

used for this purpose.

Any actual superclass should conform to the signature of the named class.

This does not imply that actual superclasses need to be subclasses of the class

named in the superclass signature declaration.

The body of the mixin is then checked under the assumption that the su-

perclass has the declared superclass signature. This allows the typechecker to

verify that:

1. No method in the mixin has a signature that contradicts that of the de-

clared superclass signature. For example, if a method declared in the

mixin would override a method in the superclass signature, we would re-

quire that its signature be a subtype of the signature of the overridden

method.

2. No field in the mixin has a signature that contradicts that of the declared

superclass signature. In Smalltalk, fields are exposed to subclasses, and

so a mixin may not declare a field of the same name as a field declared in

the superclass signature.

3. All super calls in the mixin are well typed (i.e., the superclass signature

supports all these calls with the correct method signature).

4. All self calls in the mixin are well typed (i.e., such calls are supported either

by methods declared by the mixin itself or else the superclass signature

supports them with the correct method signature).

Note that all of the above checks rely on a declaration of the intended sig-

nature of the superclass. The first two items above check the relation between

the mixin and its superclass parameter. The latter two items check the body of

the mixin itself.

However, this in itself is not sufficient because of the “negative informa-

tion problem” [CM89]. The actual superclass might include additional fields or

methods. As an example, consider the class PatientStatus sketched below:

Object subclass PatientStatus {
...

critical: b ˆ <Boolean> {...}
}
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PatientStatus is intended to represent monitoring data for hospital patients.

For our current purposes, the only relevant properties of PatientStatus are that

it is a subclass of Object and that it has a method critical: that takes a boolean

argument. If the argument is true, the patient’s condition is regarded as critical,

requiring intensive care. Now, consider the mixin invocation

InstanceCritical � PatientStatus

Even though we checked that InstanceCritical is well formed assuming a su-

perclass with signature Object, and PatientStatus is a subtype of Object, the invo-

cation is not type correct. PatientStatus defines the method critical: that is also

defined by InstanceCritical, but the argument types of InstanceCritical>>critical:

and PatientStatus>>critical: are incompatible.

Evidently, additional type checks must be made at mixin invocation time,

as discussed below. However, these checks do not require access to the source

code for either the mixin or the actual superclass. All necessary information is

provided by the signature of the actual superclass and by the mixin’s signature.

4.3.2 Typechecking Mixin Invocations

At mixin invocation time, we need to verify that the actual superclass does not

introduce members whose type conflicts with any corresponding members of

the mixin. This is in fact a repetition of checks 1 and 2 of the previous section,

applied to the actual superclass.

4.3.3 Typechecking Mixin Derivations and Compositions

Mixin derivations require no special typechecking. The signature of the derived

mixin must be inferred. Given a class C with superclass S, the mixin type is

(S, δC), where δC can be computed as the difference between the signatures of

C and S.

We typecheck the mixin composition M1 ∗M2 just as we would the mixin

invocation M1 � (M2 � S), where S is the default superclass of M2.

4.4 Interactions with Subtyping

4.4.1 Motivation

When subtyping is structural, mixins do not introduce any new issues with re-

spect to subtyping. However, most practical programming languages use nomi-

nal subtyping, where subtyping is based upon explicitly declared relationships.

Strongtalk started out as a structural type system and evolved into a nominal

one over time 2. Special care must be taken to support the use of mixins in a

nominal type system.

The basic subtyping rule used in class-based languages with nominal sub-

typing systems is

2The reasons for this evolution are outside the scope of this paper.
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C1 ≤ C2 iff either

1. C1 == C2

2. C1 is a direct subclass of S and S ≤ C2.

where C1 and C2 are classes.

Consider the class CompositeRegion shown earlier. Recall that CompositeRe-

gion was defined as

(Collection mixin � Region) subclass CompositeRegion...

The above rule allows us to conclude that CompositeRegion ≤ Region but not

that CompositeRegion ≤ Collection. Clearly, some extension of the usual rules

of nominal subtyping is called for.

4.4.2 Mixin Subtyping in Strongtalk

In Strongtalk, every class declaration and every mixin declaration implicitly

introduces a type of the same name as the declaration. The type implicitly

defined for a class is known as a protocol which consists of a set of message

signatures; it is similar to an interface in the Java programming language. The

protocol of a class is a direct subtype of the protocol of its superclass, extended

by those public message signatures declared by the class itself.

The type implicitly defined for a mixin is similar, but mixins don’t have a

superclass. Instead, we use the protocol of the class used to declare the expected

superclass signature as the supertype.

A mixin invocation M � S has as its implicit type a mixin type of the same

name, written M � S. For purposes of subtyping, a mixin type t1 � t2 acts like

an intersection type. Here are the subtyping rules for mixin types:

1. t ≤ s1 � s2 if t ≤ s1 and t ≤ s2.

2. t1 � t2 ≤ s if t1 ≤ s or t2 ≤ s.

The intuition for the first rule is this: the set of message signatures supported

by s1 � s2 consists of those signatures that are supported by s1, augmented

by any additional signatures inherited from s2. s1 � s2 does not support any

message signature not provided by either s1 or s2. Since t ≤ s1 and t ≤ s2, t

must support all signatures in s1 � s2, and is therefore a structural subtype of

s1 � s2.

The second rule can be justified intuitively as follows: A mixin invocation

t1 � t2 must be a subtype of t2 - this is ensured by the rules for typechecking

mixin invocations given in section 4.3.2. By transitivity, t1 � t2 ≤ s if t2 ≤ s.

More subtly t1 � t2 is also a structural subtype of t1. To see that, note that:

• t1 must have been declared with an expected superclass signature C.
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• Every message signature declared in t1 must be supported by t1 � t2 - it

could not be overridden by t2.

• Any other message signature supported by t1 must have been inherited

from C. But the typechecking requirements given in 4.3.2 above ensure

that t2 ≤ C. Thus, any message signatures inherited by t1 from C (or

subtypes thereof) will also be inherited from t2 to t1 � t2

t1 � t2 ≤ s if t1 ≤ s or t2 ≤ s follows directly.

Similar rules are given for gbeta [Ern99] and Scala [Ode01].

5 Mixins and Reflection

5.1 Mixins as Objects

Mixins are reified as objects in Animorphic Smalltalk. Every class is an invoca-

tion of some mixin, which can be obtained via the system’s reflective interface.

Using reflection, one can determine the structure of a particular mixin (e.g.,

what instance variables or methods it defines). One can also find out what in-

vocations of the mixin exist in the system, as exemplified by the following code

fragment, which prints a list of all classes that invoke the monitor abstraction

shown earlier:

(Mirror on: InstanceCritical) invocations do:

[:inv | Transcript show: inv name; cr]

Mirrors are special objects that are used to reflect other objects [UCCH90].

Having obtained a mirror on InstanceCritical, we can then obtain a list of invoca-

tions and execute a closure for each element in the list. The code in the closure

simply prints the line with the name of an invocation on the system transcript.

5.2 Reflective Update

Mixins are the unit of reflective update, because they are the unit of code storage

in the VM. In order to perform a reflective change to a class, a copy of the class’

mixin is first made. The copy is then changed as desired. Finally, the copy is

installed atomically in place of the original mixin. At this point, all invocations

of this mixin, their subclasses and the instances of all these classes are updated

to reflect the changes made to the mixin.

Mixins are in some respects easier to use for reflective update than classes.

A mixin cannot have any instances and a mixin object has no methods that

contain user code. There is nothing we can do with an uninstalled mixin except

reflect it or submit it for installation. As a result, a series of reflective changes

can be made on an uninstalled mixin without the need to update the entire

system at each individual change. It is even possible to simultaneously install

multiple mixins in a single atomic operation.

This has two advantages.
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1. A series of reflective changes can constitute a single transaction: none of

the changes will be made unless all of them succeed, and they will all take

place at once. Many program changes fit this pattern.

2. If several schema changes are made, it is much cheaper to batch the

changes and avoid repeated traversals of the heap to update all instances.

This contrasts with the standard approach taken in Smalltalk where each

change operation takes immediate effect.

It is more difficult to obtain the desired properties 1 and 2 if reflective

changes are made on classes rather than mixins. To see why, we will examine

two alternatives: scratchpad classes and functional update.

One might consider making copies of classes to be used as “scratchpads”,

with the intent of changing their structure and installing them later. This is

analogous to the approach we take with mixins, but it fails with classes for the

following reasons:

• Classes may be instantiated. Imagine that a scratchpad class is instanti-

ated, and then subjected to a series of change operations, such as adding

instance variables and methods that access them. If changes to a scratch-

pad class do not take immediate effect, an inconsistency arises between

the class and its instances. Attempting to invoke a method on such an

instance could lead to undefined behavior.

• Classes are usually stateful. In Smalltalk, classes may have their own

instance variables as well as class variables. Similar considerations apply

in other languages. Eiffel [Mey88] has once per-class variables. In Java

classes are associated with static variables and per-class locks etc.

Once a scratchpad copy of a class has been created the state of the original

class may evolve independently of the state of the scratchpad class. When

a scratchpad class is installed, we have to somehow reconcile its state with

that of the class being updated. Do we preserve its state, or the state of

the class being updated, or some combination of the two?

• Classes have application specific methods (class methods). This is true not

only in Smalltalk, but in Java as well. If these methods can be invoked

before the class is installed, the notion of a transactional change is lost.

To avoid these problems we would have to prevent such uninstalled classes

from being instantiated or accepting application specific messages of any kind.

These restrictions effectively turn uninstalled classes into a completely different

entity than a normal class. They effectively become class descriptions that are

independent of the class from which they are derived. Such descriptions do not

interact with non-reflective program state in any way. These descriptions are

very much like mixins, except that they specify a particular superclass.
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An alternative approach is functional update. Reflective changes on a class

would not destructively alter the class. Instead, each reflective change operation

would return a fresh copy of the class, with the appropriate changes.

This solution suffers from several disadvantages.

• The copying involved may be costly.

• The copied classes must have distinct names which must be managed

automatically.

• Invocation of class methods could still disturb invariants of the original

class.

Our conclusion is that any solution should perform reflective changes on a

purely declarative description. In practice, mixins give us such a description.

6 Implementation

In this section, we discuss the implementation of mixins in the context of the

Animorphic VM. We will not discuss the Animorphic VM’s overall implemen-

tation in any detail. Instead, we give a brief overview to provide context, and

focus on the details of mixins.

6.1 Highlights of the Animorphic VM

The Animorphic VM combines a high-performance interpreter with a dynamic

compiler into a mixed-mode execution engine. Invocation of the dynamic com-

piler is determined based upon dynamically-obtained profile data [Höl94, Mic].

Dynamic method dispatch is supported via the use of polymorphic inline

caches (PICs) [HCU91]. Classes and mixins have associated method tables that

store references to their methods, but these must be distinguished from virtual

dispatch tables commonly used in the implementation of languages such as C++

and Java. No virtual dispatch tables are used in the Animorphic system.

6.2 Transparent Lookup

In a mixin based system, a class does not include all of the methods it declares

directly in its method table. These methods are naturally shared in the mixin’s

method table. Consequently, the method lookup process must be changed to

consult the mixin. However, these changes can in principle be localized to the

routine that scans the class hierarchy during method lookup. Changes to lookup

can be transparent to the rest of the VM. In particular, caching techniques such

as PICs etc. operate unchanged.

In reality, VMs operate on concrete data structures and perform various

performance optimizations that complicate this picture.
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6.3 Data Structure

The VM represents mixins as special objects, that contain the description of a

class delta. The mixin contains descriptions of the instance variables and class

variables, and a method dictionary where all code is initially stored.

All mixin invocations contain the class variables (which are distinct for each

invocation, though shared by an invocation and all its subclasses), the class’

instance variables (which are distinct for every invocation, and indeed for every

class), the superclass (which is unique to each invocation), a pointer to the

mixin, and additional implementation information (such as the offset of the

instance variables, which varies depending on the superclass).

One of the problems when sharing code among mixin invocations is that the

physical layout of instances varies between invocations. In high performance

code, references to instance variables must be converted into physical offsets

relative to the beginning of the instance. This is not possible if the code is

shared among invocations with different instance structure. This problem is

addressed via the copying down mechanism, described below.

6.4 Copying down Methods

Methods that do not access instance variables or super are shared in the mixin.

Methods that access instance variables may have to be specialized for the invoca-

tion, where the instance variable access is customized according to the structure

of instances of the invocation.

All customization means in this case, is asking the compiler to compile a

method in the context of a particular class - the mixin invocation in question.

The customized version must be installed into the invocation. We refer to the

process of customization and installation as copying down.

Rather than copy down methods when a new mixin invocation is created, we

copy down methods into invocations lazily, the first time a method is invoked.

The mixin’s method table contains a version of every method defined in the

mixin, even methods that access instance variables or super. This version must

always exist, as a template that mixin invocations will use to customize the

method when necessary.

When a method is called on a mixin invocation it is looked up, and if no

customized version exists, the version in the mixin is found. It can then be cus-

tomized for the invocation in question, and this customized version is installed

into the invocation.

Copying down can be avoided entirely in certain circumstances:

• For explicitly declared mixins (as opposed to mixin derivations and com-

positions), methods that access instance variables are compiled assuming

an initial offset of 0. When an invocation’s actual superclass has no in-

stance variables the version compiled for the mixin can be used and no

copying down is needed.
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• If a mixin represents a class declaration, then we associate the mixin with

its master invocation, which is the class from which the mixin is derived.

The master invocation is stored in an instance variable of the mixin. Any

invocation can check if it is the master by examining its mixin and seeing

if the master is identical to itself.

We customize the method to the master invocation in place, when the

method is first called. Thus, the master invocation does not need to

have any methods copied down. When a method is invoked on another

invocation, copying down can also be avoided if the size of instances of

the invocation’s superclass is the same as that of instances of the master

invocation’s superclass.

Methods that access super must be copied down except in the case of the

master invocation.

6.5 The Cost of Mixins

The high performance of the Animorphic VM is independent of the use of mix-

ins. It is not achieved due to the use of mixins. At the same time, mixins

do not degrade performance. Mixins have essentially no performance impact

whatsoever.

There is no per-method space overhead for using mixins as long as they are

derived from classes in the conventional Smalltalk style. A per method space

overhead may occur only for some methods in regular mixins, which by design

are likely to have multiple invocations. In practice, general purpose mixins

rarely have state or access super so this occurence is infrequent.

We only have the slight per-class overhead, which is negligible, and the

run time overhead of lazy customization, which is also negligible, since it only

happens at the first call. The reflective API and classes used to manage mixins

add a small fixed cost as well.

Mixins do tend to increase the degree of polymorphism in the system. One

can expect to see the same performance effects as in any other highly polymor-

phic code.

7 Related Work

A very brief description of the Animorphic system’s mixins was given in [BG96].

The mixins implemented in the Animorphic system are based on the semantics

given in [BC90]. Alternative models of mixins that attempt to address some

of the weaknesses of this model have been proposed. The first was the no-

tion of modules proposed in [Bra92]. Since that early work, there has been a

considerable amount of research on mixins.

Gbeta [Ern99, Ern01] unifies Beta patterns with mixins. However, Gbeta

incorporates a mechanism for automated linearization of mixins unlike the model



Presentation at the ECOOP 2002 Inheritance Workshop 15

of [BC90] which we use. Gbeta is a statically typed language, and typechecks

mixin declarations and invocations in a manner similar to our system.

The unification of mixins and classes in gbeta demonstrates an important

point: using mixins, one can avoid the need for a distinction between types

and implementations (e.g., classes and interfaces in Java, classes/mixins and

protocols in Strongtalk) while retaining the advantages of multiple classification

that are the primary advantage of this distinction.

The Scala language [Ode01] supports mixins along a model similar to ours,

with a related (but mandatory) type discipline. Scala’s treatment of mixins dif-

fers in several respects. Mixins are never explicitly declared in Scala. Instead,

they are implicitly derived from class definitions. In the context of creating

a particular instance, a class’ superclass can be replaced, implicitly converting

the class into a mixin. This approach also cleanly deals with the notion of con-

structors, which can be problematic when combined with mixins (see [ALZ00]).

However, the Scala implementation differs substantially from our work, because

Scala is implemented by translation to Java virtual machine byte codes.

In Ruby [Mat01, TH01], mixins are defined as modules, and these may then

be included in other modules or in classes. Despite the considerable difference

in surface syntax, the underlying model of mixins and classes used in Ruby

is essentially the same as in Animorphic Smalltalk. The Ruby library makes

significant use of mixins, much as the Animorphic library does. Ruby does not

provide a type system or a high performance implementation of mixins.

Ancona et al. present JAM, an extension of the Java programming language

with mixins in [ALZ00]. The mixins they present are conceptually similar to the

ones discussed here. They discuss typechecking mixins along principles similar

to those presented here. However, they do not deal with mixin composition

or with automatic derivation of mixins from classes. Their work focuses on

Java-specific complications and limitations.

There have been several other efforts to typecheck mixins. The essential

intuition for typechecking mixins was sketched in chapter 3 of [Bra92]. Formal

type systems for typechecking mixins are given in [FKF98, BPS99] as well as in

[ALZ00].

Our work differs from these in the following respects:

• It is part of an optional type system.

• It is implemented as part of an interactive and incremental typechecker in

the context of a complete IDE

• We do not have a comprehensive formalization.

• We give an account of typechecking mixin composition.

Various researchers have explored mixin-like constructs with somewhat dif-

ferent semantics.

Smaragdakis and Batory [SB98] discuss mixin layers, a mechanism based on

nested mixins, implemented using C++ templates.
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Steyaert et al. [SCD+93] studied the use of mixin-methods, a mechanism

designed to allow classes to control what extensions might be applied to them-

selves.

Duggan [Dug96] has proposed mixin modules, an extension of the ML mod-

ule system designed to support mutually recursive modules. Mixin modules

may be composed into ordinary modules, in a manner related to the creation of

classes by mixins. However, ML and its module system are very different from

most object oriented languages, and exploring the relationship is far beyond

the scope of this paper. In later work [Dug00], Duggan has applied the prin-

ciples of mixin based inheritance to the construction of composable language

interpreters.

Several research proposals have introduced variations on the notion of mixins

that are concerned with the potential problem of inadvertant overrides. When a

mixin is defined, the programmer does not know the concrete superclass. Conse-

quently, the mixin may declare methods that unintentionally override methods

of particular superclasses.

In the untyped model defined here, there is no way to distinguish between

methods that are intended to override superclass methods and other methods

of a mixin. Using types, it is possible to warn of unintended overrides. Never-

theless, the overrides occur. This might be problematic, though there is little

practical experience to demonstrate the problem conclusively.

In response, Flatt et al. [FKF98, FF98b, FF98a] have proposed alternate

semantics for mixins. In their approach, mixins specify what interfaces they

intend to override. Methods of a specified interface are overridden only by

corresponding methods of the same interface.

Similarly, in Extended Moby [FR00], classes only override the known meth-

ods of their superclasses. Mixins are represented using genericity. This approach

obviates the unintended override problem, and allows for typechecking a mixin

without use of mixin signatures. Moby effectively allows mixin composition.

However, in Moby it is not possible to derive a mixin from a class after the fact

as in our system. The Moby approach relies on the presence of a mandated

static type system. Furthermore, it is predicated on abandoning subsumption.

An alternative proposed by Bono [BPS99] is to distinguish overriding meth-

ods syntactically.

None of the proposals that attempt to address the overriding problem discuss

implementation techniques for mixins in any detail. However, these approaches

lend themselves more readily to dispatch table based implementations. Lookup

based implementations may require the use of name mangling schemes.

The approaches above involve more elaborate semantics than those used in

our system, motivated by the perceived problem of inadvertant overrides. We

have opted for simpler semantics, because:

• They are better suited to a dynamically typed (or optionally typed) lan-

guage.
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• We have not observed the problem that these richer constructs attempt

to address in practice.

• They are simpler and therefore more understandable.

8 Status/History

The system described in this paper was developed starting in the fall of 1994 as

part of the Animorphic project. The Animorphic project produced a working

high performance Smalltalk system, including VM, blue book library, UI frame-

work and incremental development environment. In late summer of 1996, all

work on Animorphic Smalltalk effectively ceased due to commercial considera-

tions that dictated an emphasis on Java virtual machines. As of July 2002, a

public release of Animorphic Smalltalk will be available for download.

9 Conclusions

We have presented a working high-performance implementation of mixins that

adheres to the well defined semantic model given [BC90]. We have shown that

mixins can be implemented efficiently, incurring negligible overhead in time and

space when compared to a high-performance, class based implementation of a

dynamically typed language.

We have also shown how to optionally statically typecheck such mixins in

the context of a nominal type system, how to incorporate them in a reflective

architecture, and how they may be useful in realistic applications such as a

working UI framework and in IO libraries.
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