
Executable Grammars in Newspeak

Gilad Bracha

August 18, 2007

Abstract

We describe the design and implementation of a parser combinator library in
Newspeak, a new language in the Smalltalk family. Parsers written using our
library are remarkably similar to BNF; they are almost entirely free of solution-
space (i.e., programming language) artifacts. Our system allows the grammar
to be specified as a separate class or mixin, independent of tools that rely
upon it such as parsers, syntax colorizers etc. Thus, our grammars serve as a
shared executable specification for a variety of language processing tools. This
motivates our use of the term executable grammar. We discuss the language
features that enable these pleasing results, and, in contrast, the challenge our
library poses for static type systems.

1 Introduction

Newspeak is a programming language derived from Smalltalk, currently under
development. We have developed a parser combinator library in Newspeak, and
find that Smalltalk and Newspeak have properties that make them very well
suited for the implementation and use of such a library.

The concept of parser combinators has a long history in functional program-
ming [HM98, LM01, Wad85]. From an object-oriented perspective, the basic
idea is to view the operators of BNF as methods, known as combinators, that
operate on objects representing productions of a grammar. Each such object is
a parser that accepts the language generated by a particular production. The
results of the combinator invocations are also such parsers.

To make this concrete, lets look at a fairly standard rule for identifiers:

id = letter (letter | digit)*

We can express this in Newspeak as:

id = letter, (letter | digit) star

Assume letter is a parser that accepts a single letter and digit is a parser
that accepts a single digit. The subexpression letter | digit invokes the method |

1

on the parser that accepts a letter, with an argument that accepts a digit. The
result will be a parser that accepts either a letter or a digit.

We then invoke the method star on the result

(letter | digit) star

which yields a parser that accepts zero or more occurrences of either a letter
or a digit.

We pass this parser as an argument to the method ”,” which we invoke
on letter. The ”,” method is the sequencing combinator (which is implicit in
BNF). It returns a parser that first accepts the language of the receiver and
then accepts the language of its argument. In our example the result accepts a
single letter, followed by zero or more occurrences of either a letter or a digit,
just as we’d expect. Finally, we bind this result to id.

You should now have a basic intuition for the way parser combinators work,
and a feel for what executable grammars look like in our framework. Here is a
roadmap to the rest of this paper:

Section 2 shows a complete example of an executable grammar. Then, sec-
tions 3 through 6 discuss a number of design issues and features of our frame-
work. In particular, section 4 showcases the modular separation between gram-
mar and processing. In section 7.1, we analyze the type safety of grammars and
parsers constructed using the library, and what mechanisms are needed to stat-
ically check them. The paper presents ideas for future improvements (section
7), discusses related work (section 8), and concludes with section 9.

2 A Complete Example

We now consider a small grammar, and show how to represent it in our frame-
work. In doing so, we’ll highlight some interesting design issues. We will use
the following grammar

expression = id
returnStatement = ˆ expression.

This grammar relies on terminal symbols id, letter and digit defined as:

digit = 0 - 9
letter = (a - z) | (A - Z)
id = letter (letter | digit)*

2

We represent this in Newspeak as follows:

class ExampleGrammar1 = ExecutableGrammar (
|

digit = charBetween: $0 and: $9.
letter = (charBetween: $a and: $z) | (charBetween: $A and: $Z).
id = letter, (letter | digit) star.
identifier = tokenFor: id.
hat = tokenFromChar: $ˆ.
expression = identifier.
returnStatement = hat, expression.

|
)()

We define a class ExampleGrammar1 which is a subclass of ExecutableGram-
mar, the main class in our framework.

Every production in our grammar has a corresponding instance variable, or
slot. All access to slots in Newspeak is via method invocations. Whenever a
slot is declared, the language automatically defines accessors for it. Any use
of a slot’s name denotes a call to its accessor. This means that we can freely
alter the representation of an object, and as long as we maintain its method
interface, no code needs to change - not even code within the object’s own class.
This notion of representation-independent code was pioneered in Emerald [?],
Trellis/Owl [?] and Self [US87], and is also supported in Scala [OAC+06].

An object’s slots are initialized when the object is created. If the slot has
an explicit initializer, the initializer is evaluated and the slot is set to the result.
Otherwise, the value of a slot is initially nil.

Here slots are initialized to their corresponding parser, so each slot definition
gives a production rule of the grammar. The rules for digit and letter are in
direct correspondence to the grammar. They use the inherited utility method
charBetween:and: that produces a parser that accepts characters within a given
range.

The rule for id is the same one we saw before. At this point, however, it
becomes evident that the lack of distinction between lexing and parsing is a bit
of a problem. Traditionally, we rely on a lexer to tokenize the input. As it does
that, it does away with whitespace (ignoring languages that make whitespace
significant) and comments. This is dealt with by the operator, tokenFor:, that
takes a parser p and returns a new parser that skips any leading whitespace and
comments and then accepts whatever p accepts. This parser will also attach
start and end source indices to the result, which is very handy when integrating
a parser into an IDE. It is useful to define a production identifier that produces
such tokenized results.

The rule, hat, for the terminal ˆ is similar, but relies on a convenience method
tokenFromChar: that parses a given character and tokenizes it. We can now
define the syntactical grammar without concern for whitespace or comments,
just as we would in traditional BNF.

3

3 Mutual Recursion

Grammar rules are often mutually recursive. As an example, let’s extend our
grammar with these two productions:

statement = ifStatement | returnStatement
ifStatement = if expression then statement else statement

We’ll need to deal with the new keywords, and add the new productions to
the grammar:

class ExampleGrammar2 = ExampleGrammar1 (
|

if = tokenFromSymbol:#if.
then = tokenFromSymbol:#then.
else = tokenFromSymbol:#else.
ifStatement = if, expression, then, statement, else, statement.
statement = ifStatement | returnStatement.

|
)()

Because our grammar is embedded in a Newspeak class, we can leverage
Newspeak’s support for inheritance and define the grammar extension as a sub-
class, literally extending the original grammar.

However, there seems to be a problem: when initializing ifStatement, we
make use of statement, which is not yet initialized. Reversing the order between
the two won’t help, because the productions are mutually recursive. In a lazy
language like Haskell [PJe02] this is not an issue - which is one key reason
Haskell is very good at defining domain specific languages. Newspeak is not a
lazy language however.

One approach to this problem would have our parser combinators take clo-
sures as arguments rather than parsers. Indeed, an earlier version of our frame-
work did exactly that. Instead of writing

returnStatement = hat, expression

We would write

returnStatement = hat, [expression]

One complaint about using closures as arguments for parser combinators
is that programmers may mistakenly pass parsers as arguments directly. In
fact, this is a non-issue. Such mistakes were dynamically detected by our ear-
lier framework. Even though detection was dynamic, it occurred during the
construction of the grammar, not during actual parsing. The effect was essen-
tially the same as with static checking. Moreover, it would be trivial to allow
combinators to accept either parsers or closures.

4

Nevertheless, the use of closures detracts from the clarity of the grammar.
We are fortunate that the closure syntax in Smalltalk (and hence Newspeak)
is very lightweight, but we still prefer to avoid closures altogether. The use of
closures introduces a disturbing asymmetry, where the receiver of a combinator
is a parser, but its argument is a closure that evaluates to a parser.

Instead of relying on closures or laziness, our framework uses reflection to
bind the slots for each production to instances of class ForwardReferenceParser
before the slot initializers are executed.

Instances of ForwardReferenceParser support the usual parser combinators
and are initially unbound. When a production such as ifStatement, that is mu-
tually dependent on another (e.g., statement) is computed, the slot for the other
production is accessed. In our example, statement will return a ForwardRefer-
enceParser and the construction of the grammar proceeds. Forward references
are lazily bound to the appropriate parser, to which they forward all subsequent
calls, the first time they are called upon to parse.

4 Grammar Processing

The ability to define a parser by writing a program that so closely corresponds
to the grammar is attractive. However, just accepting a language is not all that
useful. Typically, some processing needs to be performed (e.g., to produce an
AST as a result).

To address the need for processing, we introduce a new operator on parsers,
wrapper:. The result of this operator is a parser that accepts the same language
as the receiver. However, the result it produces from parsing differs; during
parsing, the results produced by the receiver are passed to a closure which
wrapper: takes as its sole parameter. The overall result is the the result returned
by the closure - typically an abstract syntax tree.

5

class ExampleGrammar3 = ExecutableGrammar (
|

digit = charBetween: $0 and: $9.
letter = (charBetween: $a and:$z) | (charBetween: $A and:$Z).
id = letter, (letter | digit) star

wrapper:[:fst :snd | fst asString, (String withAll: snd)].
identifier = tokenFor: id

wrapper:[:v | VariableAST new name: v token; start: v start; end: v end].
hat = tokenFromChar: $ˆ.
expression = identifier.
returnStatement = hat, expression

wrapper:[:r :e | ReturnStatAST new expr:e; start: r start; end: e end].
|
)()

This is illustrated above. The grammar productions for id, identifier and re-
turnStatement have been augmented with processing using wrapper:. The gram-
mar remains clearly distinguishable, with the AST generation on separate lines.
However, it is preferable to keep the grammar completely separated. We will
therefore move the AST generation code to a subclass, where the grammar
production accessors will be overridden as shown below.

class ExampleParser1= ExampleGrammar1 ()
(

id = (
ˆsuper id

wrapper:[:fst :snd | fst asString, (String withAll: snd)]
)
identifier = (

ˆsuper identifier
wrapper:[:v | VariableAST new name: v token; start: v start; end: v end].

)
returnStatement = (

ˆsuper returnStatement
wrapper:[:r :e | ReturnStatAST new expr:e; start: r start; end: e end].

)
)

This organization is useful, for example, if one wishes to parse the same
language and feed it to different back ends that each accept their own AST; or
if one needs to use the parser for a different purpose, such as syntax coloring,
but wants to share the grammar.

We can do something similar with our extended grammar. However, here
we find that single inheritance confronts us with a problem. Should our parser
extend ExampleGrammar2 or ExampleParser1? Obviously, we need to extend
both.

6

The appropriate superclass for our extended parser is

ExampleParser1 mixin | > ExampleGrammar2

the application of the mixin [BC90, BG96, BBG+02] implicitly defined by
class ExampleParser1 to the class ExampleGrammar2.

class ExampleParser2 = ExampleParser1 mixin | > ExampleGrammar2 ()
(

ifStatement = (
ˆsuper ifStatement

wrapper:[:ifKw :e :thenKw :s1 :elseKw :s2 |
IfStatAST new cond: e; trueBranch: s1; falseBranch: s2;

start: ifKw start; end: s2 end
]

)
)

This modular structure, in which grammars are separate, reusable executable
components is the most distinctive feature of executable grammars.

5 Naming Parsers

Some parser combinator libraries offer support for naming parsers. This makes
it easier to debug errors in the grammar. It can also be useful to print out
the name of the production when reporting errors. Unfortunately, naming the
productions in this way adds clutter and obscures the grammar. It also forces
the programmer to repeat information already given in the specification, for
example:

id = letter, (letter | digit) star.
id name: #id.

Here, the name id has already been given to the production in the context of
the surrounding grammar. However, the parser itself is not aware of that until
it is explicitly told its name in the second line above. Instead, our framework
reflectively traverses the grammar and names the various parsers based on the
name used for the production in the surrounding context. No redundant and
distracting naming combinator is necessary.

7

6 Error Handling

Care must be taken in order to support good error reporting in a parser combi-
nator framework. Consider the grammar

def = identifier { stmt*}
stmt = (ifStmt | expr) dot
ifStmt = if expr then stmt else stmt | if expr then stmt
expr = identifier := expr |

number |
identifier

Given the input

foo {
v := 3.
if true then s := 5 else s := 7.
}

In a naive implementation of parser combinators, parsing fails

foo {
v := 3.
’}’ expected! -> if

The real error is that there is no ’.’ terminating the true branch of the if
statement. The situation would be clearer if the parser failed as follows:

foo {
v := 3.
if true then s := 5 ’.’ expected! -> else

What actually happens is that when parsing the if statement, parsing fails
on both variants (with and without else) of the ifStmt production, due to the
missing ’.’ after 5.

The parser then uses the expr production. The first two options of expr fail,
but if is parsed successfully as an identifier. However, there is no ’.’ after if,
and so the production stmt fails. At this point control returns to stmt*, which,
having already parsed one statement successfully, is happy to stop trying and
return successfully, rolling the input back to just after the first statement (v :=
3.) Now, the production for def seeks a ’}’, but doesn’t find one, and the parse
fails at the token if with the message given.

To alleviate this problem, our framework records the deepest (rightmost in
the input) error detected during the parse. If the parse is successful, any such
interim failures are irrelevant. However, if the parse fails, it is the deepest error,
rather than the latest one, which needs to be reported. That would be the error
complaining about the missing ’.’ after the 5, as we would like.

8

7 Future Developments

7.1 Typechecking

The pattern we have seen, whereby the grammar is separated from its pro-
cessing, is not easy to maintain while insisting on fully static typechecking.
To explore the issues, we will recast some of our examples in a hypothetical
statically typed language similar in style to current mainstream programming
languages.

Consider that ExampleParser1 is not a subtype of ExampleGrammar1. For
example, in ExampleParser1, returnStatement returns a parser that returns Re-
turnStatAST, whereas in ExampleGrammar1 the returnStatement method returns
a parser that returns a collection. These types are unrelated. In general, every
production in the grammar has a corresponding method, and in most cases,
the type of the subclass method is not a subtype of the type in the superclass.
In most statically typed object-oriented programming languages, this situation
is illegal. Despite this, our design is correct and causes no type errors during
execution.

All uses of the methods that corrrespond to productions within Example-
Grammar1 rely only on the fact that these methods return an ExecutableGram-
mar; they do not rely on the type of object that a parser returns when parsing.
Suppose we defined an interface type S that included all the methods of type Ex-
ampleGrammar, except that they all returned type ExecutableGrammar〈?〉. 1 We
could successfully typecheck ExampleGrammar1 under the assumption that the
type of self was a subtype of S. This shows that it is sufficient that subclasses
of ExampleGrammar1 be subtypes of S for the type safety of ExampleGrammar1
itself to be preserved. In particular, ExampleParser1 is a subtype of S; every
production method in it returns an ExecutableGrammar〈X〉, for some X.

One possibility is to avoid making ExecutableGrammar a generic type. This
inevitably leads to a reliance on dynamic typechecking, since the results of a
parse would be of type Object, and casting and/or pattern matching would
be required to recover the type information for further processing. We will
not pursue this direction further, as our interest here lies in exploring how to
statically typecheck executable grammars.

In our first formulation, the grammar is represented by class ExampleGram-
mar1, which has one type parameter for each production in the grammar. To
keep our example short, we have only two non-lexical productions, and two
type variables. A realistic grammar would include dozens of productions, with
dozens of type variables.

We also define an interface, AbstractGrammar, which declares methods cor-
responding to each production. It too declares a type parameter for every
syntactic production.

The type of this, This in ExampleGrammar1 is declared to be an instance
of AbstractGrammar. The type variables are passed through; ExampleGrammar1
does not depend on the return types of the parsers it creates, so these type

1Our notation here is similar to that of Java wildcard types [THE+04]

9

interface AbstractGrammar<R, E> extends ExecutableGrammar <?> {
ExecutableGrammar<E> expression();
ExecutableGrammar<R> returnStat();
ExecutableGrammar<Token> hat();

}
class ExampleGrammar1<R, E> extends ExecutableGrammar<R> {

type This = AbstractGrammar<R, E>;
public ExecutableGrammar<Token> hat() {...};
public ExecutableGrammar<List<Token>> expression(){...}
public ExecutableGrammar<(Token, E)> returnStat() {

return hat().seq(expression());
}
class ExampleParser1 extends ExampleGrammar1<ReturnStat, ExpressionAST>

implements AbstractGrammar<ReturnStat, ExpressionAST> {
public ExecutableGrammar<ExpressionAST> expression(){...}
public ExecutableGrammar<ReturnStat> returnStat() {

return super.returnStat().wrapper(
{Token hat, ExpressionAST expr =>

ReturnStat(expr)}
)

}
}
class ReturnStat {

public ReturnStat(ExpressionAST e) {...}
}

variables play the role of wildcards. Naming them explicitly will allow us to
typecheck the subclass that creates the AST, ExampleParser1.

The subclass instantiates ExampleGrammar1 with actual type parameters
corresponding to the AST class created for each production. The actual re-
turn type for each production in ExampleGrammar1 is a function of the type
parameters to the class. Consequently, we can derive an accurate type for su-
per within ExampleParser1. Using this type, one can accurately typecheck the
subclass. The subclass is still not a subtype of the superclass, but it is a sub-
type of the declared self type of its superclass; such subclasses are legal in our
hypothetical language.

The burden of declaring methods corresponding to every production in a
separate interface, explicitly declaring a type variable for every production in
that interface and in the class implementing the grammar, and instantiating
both these types is prohibitive. A grammar for even a small language like
Smalltalk can have over 30 productions, requiring more than 30 type variables
to be introduced. Virtual types mitigate this only slightly.

Below we illustrate an approach that eases the notational burden somewhat.
We can typecheck the superclass against a self type that returns parsers with an
unknown return type, using the wildcards construct of Java 5 [THE+04]. We use

10

type selection on the type this in the return type ExampleGrammar1.returnStat()
to make that type vary according to the return type actually declared by the
expression() method in subclasses. This enables us to obtain an accurate type
for super in ExampleParser1. Selection on this provides us implicitly with
the necessary type parameterization, allowing this approach to scale to real
grammars where the previous one does not.

interface AbstractGrammar extends ExecutableGrammar {
ExecutableGrammar<?> expression();
ExecutableGrammar<?> returnStat();
ExecutableGrammar<Token> hat();

}
class ExampleGrammar1 extends ExecutableGrammar {

type This = AbstractGrammar;
public ExecutableGrammar<Token> hat() {...};
public ExecutableGrammar<List<Token>> expression(){...}
public ExecutableGrammar<(Token, this.expression.returnType)> returnStat() {

return hat().seq(expression());
}
class ExampleParser1 extends ExampleGrammar1

implements AbstractGrammar {
public ExecutableGrammar<ExpressionAST> expression(){...}
public ExecutableGrammar<ReturnStat> returnStat() {

return super.returnStat().wrapper(
{Token hat, ExpressionAST expr =>

ReturnStat(expr)}
)

}
}

It is clear that we cannot express the separation of grammar and processing
properly without relying on dynamic typing in the absence of a very sophis-
ticated type system. Incorporating such type systems in a general purpose
language without undue complexity is a difficult challenge. Pluggable type sys-
tems [Bra03] may be a good fit for such situations. A well designed pluggable
type system should enable one to tailor a type system that could be used to
typecheck executable grammars, without burdening the language as a whole.

7.2 Performance

Parser combinators are not noted for high speed. Nevertheless, our experience
has been positive. Our very first implementation was adequate in most cir-
cumstances. We work in an incremental programming environment, so code is
usually compiled one method at a time, and methods tend to be short. Thus,
even though each method is parsed on every keystroke (for syntax coloring),
response was usually immediate. However, in methods larger than 25 lines, one

11

could detect a delay. Methods containing long strings or comments also exhib-
ited performance pathologies. Small adjustments resulted in an improvement of
a factor of 3 in performance on average, and eliminated pathologies.

We have chosen to use the PEG alternation combinator [For04], which com-
mits to the first successful choice, reducing backtracking. This limitation has
very rarely been a problem. We could easily add another combinator that im-
plemented true alternation as in BNF.

For PEGs,, we should be able to produce memoizing packrat parsers [For02]
that parse in linear time. However, we have not yet felt a need to do so.

The reflective facilities of Smalltalk and Newspeak make it possible to dy-
namically optimize grammars, either at the time they are constructed or during
parse time. Nor is there a need to commit to a single optimization strategy. For
example, grammars could support a method packrat which would produce an
equivalent memoizing parser if possible, and fail if the grammar was unsuitable
(perhaps because it used context sensitive or non-deterministic combinators).
In cases where memory consumption is a concern, we might apply other opti-
mizations, e.g., those used by Tedir [Han04].

7.3 Left Recursion

Left recursive grammars are a problem for classical parser combinator based
approaches. For example

expr = expr + expr | expr * expr | id

In such cases one has to refactor the grammar. In practice this is not a sig-
nificant issue. The problem can be addressed by any of several design choices,
including an explicit fix combinator, or support for higher level operator defini-
tions such as

expression = identifier |
(binaryOperators:{ {#+. #-.}{ #*. #/} {ˆ. !}} on: expression)

where the binaryOperators:on: method takes a list of lists of operators as its
first parameter. Each sublist gives a set of operators at a given precedence level,
from lowest to highest. The base case is given as the second parameter.

Another possible solution is for the parser to refactor itself dynamically to
eliminate left recursion. Dynamic refactoring is relatively easy in Smalltalk-like
languages, thanks to the rich reflective system and the absence of mandatory
typing.

7.4 Context-sensitive Grammars

In principle, parser combinators can be used to parse context-sensitive gram-
mars as well. In a functional setting, monadic parser combinators [HM98] are
necessary to achieve such behavior, but in an imperative language, parsers can

12

communicate shared state. Hence we see no serious difficulty supporting context
sensitive parsing, though we have not yet had a need to implement one.

8 Related Work

A great deal of work on parser combinators has been done in the context of
functional programming. A comprehensive survey is beyond the scope of this
paper. Parsec [LM01] is one of the most highly evolved parser combinator
libraries. Parsec’s differs from our framework in that it returns multiple results
for the BNF alternation operator. Correspondingly, its error reporting strategy
seeks to collect all errors on all possible parsing paths. Parsec provides excellent
performance. However, it is not clear how modular separation of grammar
and processing would be achieved using Parsec or any other functional parser
combinator library we are aware of.

Object oriented frameworks for parser combinators have been implemented
in Java (e.g., [JPa]) and in Scala [Ode07, MPO07]. Like Newspeak, Scala sup-
ports operators as methods, mixins and representation independence. It is thus
unsurprising that the Scala’s Sparsec framework is is quite similar to ours in its
overall structure. Scala addresses the problem of delayed evaluation of mutually
recursive productions using call-by-name. The call-by-name mechanism relies
on mandatory typing to coerce expressions into closures. Scala’s type system
cannot fully statically typecheck examples where grammar and processing are
separated.

Andrew Black developed a parser combinator framework in Smalltalk [Bla].
That framework was designed to be as similar as possible to a monadic parser
combinator framework in Haskell for pedagogical reasons. It does not support
the separation of the grammar from processing.

Tedir [Han04] is a system designed for high performance, dynamically modifi-
able parsing. Packrat parsing [For02, For04] is a technique for high performance
parsing of deterministic, context free grammars.

Another dimension for comparing related work is programming language
design. The language features we have capitalized upon to express executable
grammars are:

1. Dynamic typing

2. Binary selectors

3. Closures

4. Introspection

5. Inheritance

6. Mixins

7. Representation independence

13

As far as we are aware, the only language apart from Newspeak that support
all these features is Self. Scala has all but (1), but typechecking can be relaxed
through pattern matching. Smalltalk has all but (6) and (7), and can represent
executable grammars a bit more verbosely than Newspeak, with occasional code
duplication. In mainstream languages such as Java, only (4) and (5) are present,
and one cannot express the design shown here without falling back on dynamic
checking.

9 Conclusions

We have identified the notion of executable grammars and presented a frame-
work for their construction. Executable grammars are defined by the following
characteristics:

• An executable notation that is almost entirely free of solution-space arti-
facts; it should be very close to BNF.

• The ability to modularly separate the grammar from any processing, en-
abling the grammar to serve as a shared executable specification used by
a variety of language processing tools.

Our framework supports these attributes by implementing parser combinators in
Newspeak, a new language of the Smalltalk family, leveraging key features of the
language: dynamic typing, methods with operator syntax, closures, reflection,
mixin based inheritance and representation independence.

Dynamic typing is an attractive alternative to the extremely sophisticated
and verbose type discipline needed to encode executable grammars in the pres-
ence of mandatory static typing.

Acknowledgements

Martin Odersky suggested the error handling strategy described in section 6.
Special thanks also to Eliot Miranda, Christian Plesner-Hansen and Alex Buck-
ley for detailed discussions on some of the ideas in this document. Others who
have contributed insights include Peter von der Ahé, Andrew Black, Erik Ernst,
Neel Krishnaswami, Christophe Grand, Philip Milne, Adriaan Moors, Stephen
Pair, Doaitse Swierstra, Philip Wadler, Jim White and semi-anonymous people
who posted comments on my blog [Bra].

References

[BBG+02] Lars Bak, Gilad Bracha, Steffen Grarup, Robert Griesemer, David
Griswold, and Urs Hölzle. Mixins in Strongtalk, 2002. Invited paper,
ECOOP Workshop on Inheritance.

14

[BC90] Gilad Bracha and William Cook. Mixin-based inheritance. In Proc.
of the Joint ACM Conf. on Object-Oriented Programming, Systems,
Languages and Applications and the European Conference on Object-
Oriented Programming, October 1990.

[BG96] Gilad Bracha and David Griswold. Extending Smalltalk with mixins,
September 1996. OOPSLA Workshop on Extending the Smalltalk
Language.

[Bla] Andrew Black. Personal communication.

[Bra] Gilad Bracha. Room 101. Blog at gbracha.blogspot.com.

[Bra03] Gilad Bracha. Pluggable types, March 2003. Colloquium at
Aarhus University. Slides available at http://bracha.org/pluggable-
types.pdf.

[For02] Bryan Ford. Packrat parsing: Simple, powerful, lazy, linear time. In
Proc. of the ACM SIGPLAN International Conference on Functional
Programming, pages 36–47, September 2002.

[For04] Bryan Ford. Parsing expression grammars: A recognition-based syn-
tactic foundation. In Proc. of the ACM Symp. on Principles of Pro-
gramming Languages, pages 111–122, January 2004.

[Han04] Christian Plesner Hansen. An efficient, dynamically extensible ELL
parser library, May 2004. Masters Thesis.

[HM98] Graham Hutton and Erik Meijer. Monadic parser combinators.
8:437–444, July 1998.

[JPa] Jparsec library. Available at http://jparsec.codehaus.org/.

[LM01] Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser
combinators for the real world. Technical Report UU-CS-2001-27,
Department of Computer Science, Universiteit Utrecht, 2001.

[MPO07] Adriaan Moors, Frank Piessens, and Martin Odersky. Parser Combi-
nators in Scala. Technical Report CW491, Department of Computer
Science, K.U. Leuven, 2007. Under preparation. http://www.cs.
kuleuven.be/publicaties/rapporten/cw/CW491.abs.html.

[OAC+06] Martin Odersky, Philippe Altherr, Vincent Cremet, Iulian Dragos,
Gilles Dubochet, Burak Emir, Sean McDirmid, Stéphane Micheloud,
Nikolay Mihaylov, Michel Schinz, Lex Spoon, Erik Stenman, and
Matthias Zenger. An Overview of the Scala Programming Language
(2. edition). Technical report, 2006.

[Ode07] Martin Odersky. Scala by example, January 2007.

15

gbracha.blogspot.com
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW491.abs.html
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW491.abs.html

[PJe02] Simon Peyton Jones (editor). Haskell 98 language and li-
braries, the revised report, December 2002. Available at
http://www.haskell.org/onlinereport/.

[THE+04] Mads Torgersen, Christian Plesner Hansen, Erik Ernst, Peter von der
Ahé, Gilad Bracha, and Neal Gafter. Adding wildcards to the Java
programming language. Journal of Object Technology, 3(11):97116,
December 2004. Special issue: OOPS track at SAC 2004,
Nicosia/Cyprus, http://www.jot.fm/issues/issue 2004 12/article5.

[US87] David Ungar and Randall Smith. SELF: The power of simplicity. In
Proc. of the ACM Conf. on Object-Oriented Programming, Systems,
Languages and Applications, October 1987.

[Wad85] Philip Wadler. How to replace failure by a list of successes. In Proc.
of a conference on Functional programming languages and computer
architecture, pages 113–128, New York, NY, USA, 1985. Springer-
Verlag New York, Inc.

16

	Introduction
	A Complete Example
	Mutual Recursion
	Grammar Processing
	Naming Parsers
	Error Handling
	Future Developments
	Typechecking
	Performance
	Left Recursion
	Context-sensitive Grammars

	Related Work
	Conclusions

