
Converting Smalltalk to Newspeak
Gilad Bracha

This guide offers advice on how to convert existing Smalltalk code to Newspeak;
specifically, the Newspeak2 dialect current as of March 2010. This document assumes
you have a basic familiarity with both Smalltalk and Newspeak. Otherwise, youʼre not
ready to do the sort of port/conversion we envisage here.

You will have to decide whether you want to convert the code into a single monolithic
Newspeak class, or represent it via several top level classes that you link together. If
your code base is very large, the latter is better. If it is of moderate size (say, less than 5
KLoC, certainly no more than 10 KLoC) you may prefer to keep it in one top level class.

If at all possible, get your code into a Newspeak image. Newspeak images are currently
variants of Squeak, and can safely file in Smalltalk code in file out format.
Ensure that your code goes into its own distinct categories.

Of course, if your code includes any class whose name, N, is identical to that of a class
already in the Squeak environment, you may run into problems because your file-in may
modify N and break it. This is exactly the sort of weakness of Smalltalk that Newspeak
excels at solving.

If this the case, rename your class N temporarily to avoid conflicts. You need not
rename uses of the class N in Smalltalk code. We only need to rename those places in
the file-in that would modify the existing class N (such as, ʻN methodsFor: ..., and ʻN
class methodsFor:ʼ etc.).

Now that you have your Smalltalk code loaded, you can start the conversion process.
There are two possible approaches. One is to print out your classes in an actual syntax
that is close to Newspeak syntax rather than file out format, and continue the
conversion in a text editor.

The other option is to use tools in the programming environment to do some of the work
for you. To be honest, these tools are immature and need some work, so the choice is
not clear cut.

Weʼll describe both paths in this document.

Manual Conversion

Fully manual conversion is probably best for relatively small bodies of code.
View each class you wish to convert in the Hopscotch browser. Choose the option Print
class from the class presenterʼs drop down menu. If your Smalltalk class is named Foo,
youʼll find a file named Foo.st in your working directory. Open it in your favorite text
editor. Youʼll see that this isnʼt a file-out format file. Rather, it uses a real syntax for
classes, not dissimilar to Newspeak syntax. We refer to this as NS0 (Newspeak-0)
syntax - essentially Smalltalk with a top level class syntax.
There are still some adjustments to be made, but much of the syntactic conversion has
already been done. However, you still need to deal with some syntactic issues.

 Assignments

Convert ':=' (or, if youʼre code originated in Squeak or some ancient Smalltalk-80, ʻ_ʼ)
to '::', eliminating any leading spaces before the assignment. You will need to be careful
if you have code that is chaining assignments, for example, x := y := z. The conversion
to x:: y:: z wonʼt be legal Newspeak code. Since it wonʼt parse, youʼll eventually find out
and have the chance to fix these things manually.

Class headers

You need to add the keyword class in front of the NS0 class declaration. Also, NS0 has
no separate instance initializer. Just add ʻ)(ʻ after the instance variables (or after the
opening parentheses of the class declaration if there are no instance variables). Unless
you expect this class to be a top level class in NS2 (highly unlikely), remove the first
two lines of the file - the class category and language (Smalltalk) as well. In the very
rare eventuality that this is going to become a top level class, just replace the first line
with the word Newsqueak2.

Now you can save the file as Foo.txt. Youʼll need to repeat this exercise for each of your
Smalltalk classes.

Primitives

Primitives are of course syntactically invalid in Newspeak. They should become calls to
VMMirror.

Newspeak has no notion of primitives. Operations which may not be plausibly
implemented directly in Newspeak are performed by sending a request to the
Newspeak VM. Concretely, this means obtaining an instance of VMMirror and sending
it the appropriate message.

The interface of VMMirror needs to be fixed - essentially determining a standard set of
primitives. This has not yet been done. If you find you have code that uses a primitive
that is not implemented by VMMIrror or by a library class, please post to the Newspeak
forum.

If you are converting from Squeak, it may be that you have code that is invoking a
primitive defined by a plugin. Such code should be treated as a foreign function call as
described in the following section.

Foreign Function Calls

Many Smalltalk dialects have FFI calls that use a special syntax based on the primitive
syntax. In contrast, Newspeak has no special syntax for foreign calls. Such calls should
be converted to use Aliens.

Note: Some calls require parameters of non-trivial C datatypes. Aliens for these need to
be constructed. The Alien documentation recommends subclassing Alien for this
purpose. However, it is preferable to use composition rather than inheritance for several
reasons. One is simply that NS2 classes cannot inherit from variable-sized classes such
as Alien. It is also sometimes useful to interpret the same alien in different ways, which
is easier if different objects share a reference to the same alien.

Class Methods

Usually, weʼd worry about class methods later in the process, but there are some issues
that make it advisable to attend to them early.

An explicit new method causes the NS2 system to go bonkers, because the classes
don't have a primary factory, so a synthetic new method is expected, but the explicit one
interferes with that. Best to get rid of new before compiling anything.

For any class that has a class method new, either:
(1) introduce an explicit primary factory
(2) eliminate new
(3) rename new

Often, new just calls initialize. In most cases, initialize just sets some slots. So I try
and use the slot initialization syntax and get rid of initialize and new altogether. If

initialize makes any calls, they can usually go after the slots in the instance initializer as
well.

Another issue is that class methods are not inherited. If these are factory methods, one
may have to replicate them in subclasses. Other methods can often be moved out of the
class into the enclosing class.

Accessors

Smalltalk code may have manually defined accessors, whose names are derived from
the instance variable names being accessed exactly as in Newspeak. These conflict
with the automatically generated ones, and confuse the system badly. Like new above,
they should be eliminated before submitting code to the Newspeak compiler.

Module Boundaries

At this point, you should be over the syntactic issues, and those special concerns that
might effect Newspeak compilation. Now you need to think (ouch!).

As discussed above, you have to decide on the modular organization of your
application. Is it going to be one top level class, or several classes that interoperate?
This is a serious design exercise. As part of that, you will need to decide on the name(s)
of your top level Newspeak class(es) and which classes nest where.

The simplest tack is just to define a single top level class. It also reduces the chances of
problems during the port. The safest path is to get things working in one monolithic
class, and think about refactoring things later. But sometimes it is clear that there are
several distinct parts that should be kept separate.

In any case, the first organizational scheme you come up with may not be idiomatic
Newspeak. Even within a single class, a large library may be subdivided among several
nested classes purely for structuring purposes - expressing the architecture, managing
the namespace etc. But these are things you can do later as well, and experience
shows it is easier to work in stages. That said, you should certainly plan on taking the
time to refactor after you get the first version working

For simplicity, we will indeed assume that there is a single class Bar that represents
your application. Create the file Bar.ns2 with an empty Newspeak2 class. Inside the
body of that class, you will paste the contents of Foo.txt, for every Smalltalk class Foo
you converted.

You should now have a syntactically valid Newspeak2 class, or something very close to
it. The only remaining issue is one we alluded to above - there may be multiple
assignments that got converted automatically, that need to be broken into separate
parts. And of course, errors may have occurred in the above steps as well.

The only way to find out is to try and compile Bar.ns2. Once you get past the parser,
youʼll have Bar in the IDE and can continue working on it there.

Tests

The convention of including tests for a class in the class itself is strongly frowned upon
in Newspeak. Tests should be factored out into a separate class in X-tests category,
where X is the package for the module. Itʼs best if they are converted to use the NSUnit
testing facility.

Global, Pool and Class Variables

For each class Foo, you also want to check if it defined any class variables. Each such
variable should be declared as a slot of the top level class Bar. Any globals or pool
variables defined by your application should also become slots of the top level class.

Itʼs rare, but possible, for two or more of these classes to define class variables with the
same name. Even rarer would be conflicting pool variables, or globals that conflict with
pool or class variables.

You can check this once you introduce the top level slot - search for senders of it. If it
was originally a class variable but appears in two distinct nested classes, there is a
conflict. If it was a pool variable, make sure all the classes it appears in used to access
that pool - otherwise it is a conflict.

If that is the case, youʼll need to rename at least one of the slots. To be safe, rename
both - this will ensure that if you didnʼt rename a usage, the problem will manifest itself
as a message-not-understood error.

The initialization of these variables likely occurred in some class initialization method, or
relied on some other mechanism (like VisualWorks parcels). You should ensure that the
module level instance initializer takes over these responsibilities - either by directly
initializing the slots, or by calling the requisite methods. As with instance level
initialization, the former is preferred, unless the initializing methods also make other
calls etc.

Imports

In Newspeak, one has to identify all external dependencies. It makes sense to do this
once youʼve defined the slots corresponding to your Smalltalk codeʼs pool, class and
global variables. Go through the code, checking out anything highlighted in red,

especially upper case identifiers, which are likely imports (unless youʼve overlooked a
global, pool or class variable, or forgotten to paste in a class).

Of course, inherited methods may be highlighted red as well, but they wonʼt begin with
an upper case letter.

Each import will need to be declared and initialized. Which means you will have to
define the primary factory for your top level class, if you havenʼt done so already. Even if
you have, you may realize things have to change because of imports you overlooked.

Refinements
Your original Smalltalk code base likely consists of a number of distinct class categories.
These categories can serve as a guide to structuring the Newspeak version of the code,
especially if the category based organization was a sensible one.

If you decide to keep your code in one top level class, you may want to replace the
initial, flat internal structure with nested classes corresponding to each category. This
imparts a clean architectural structure to your code. It does, however, introduce an
additional level of enclosing object between the code that does the actual work and the
module level. It will also tend to break things.

Consider the HopscotchFramework class. It contains several nested classes, such as
CoreClasses. Each of these consists of numerous nested classes, and is analogous to
a class category. Corresponding to CoreClasses, there is a module variable core
which holds an instance of CoreClasses. Any code within the module (but outside of
CoreClasses) that needs to access classes defined in CoreClasses does so via the
module variable core.

The structure used in HopscotchFramework is a general pattern. Once you have a
working NS2 module with many nested classes, you may refactor it in a similar style.
For each of your original categories “Some Category”, create a nested class
SomeCategory. Define a module variable

someCategory = SomeCategory new.

Move the classes that originated in the “Some Category” category so they nest inside
SomeCategory. For each class N in SomeCategory, you need to track down all sends
of N in the module that are outside of SomeCategory, and replace them with
someCategory N.

Of course, you may want to refine things further, moving other module variables into
nested classes etc. If your original category structure was deficient, you may want to
introduce a different organization.

Semi-automatic Conversion
Newspeak offers some basic tools to partially automate the conversion process. The
idea is to convert a single class category into a top level Newspeak class. We will want
to keep all the classes that will end up being nested in an enclosing top level Newspeak
class in the same category, and all classes that belong in a different top level Newspeak
class in a different category.

If you plan to produce a single top level class for your application, converting a class
category is all you need to do. Otherwise, my need to consider how to tie the various
top level classes you produce into a single application or library. However, that process
is unrelated to code conversion; it is part of the design of any Newspeak library or
application that spans multiple module declarations.

Therefore, we will focus on the conversion of a single category. Throughout this section,
the words manual or manually will be highlighted whenever human intervention may
be required in the conversion process.

Converting a Class category

Open the category in a Hopscotch browser.

At the top right, youʼll see a link named convert. Press it.

It will tell you that your classes need to be converted to NS1 as a first step.

The system should be refined so it can do the entire conversion from Smalltalk in one
step.

If your code has accessor methods (that is, methods whose names are the same as the
names of instance variables, possibly with a colon at the end), you will be asked to
eliminate them as shown above. In other words, manual intervention is required. The
most common situation is probably simple getters and setters: instance variable i with
methods

i

 ^i

i: v

 i := v

These methods should simply be deleted before the conversion begins. In any other
case of accessor methods, we want to rename the instance variable i to some unused
name such a s i_0. The methods will no longer be considered accessors, and
conversion can proceed.

The system should be able to cope with accessors automatically, but it doesnʼt.

If your code defines global or pool variables, their declarations will be lost in the
conversion and they will be converted into imports as described below. If your code
defines class variables, you will have to eliminate them before proceeding as shown in
the above screenshot. When you delete them, the system will warn you if they are
actually used. In that case, they will be moved to the Undeclared variable list. This will
effectively convert them into globals; they too will end up as module variables with
imports. Make a note of any class variables you eliminate; you will need to deal with
their initialization later.

The converter should be able to detect class variables defined by classes within the
category and convert them into uninitialized module variables. Likewise, pools used
exclusively by classes in CategoryToBeConverted. However, the initialization of such
slots would still require manual intervention.

Once you have dealt with these obstacles, you should be able to move ahead with the
conversion to NS1.

The NS1 conversion will automatically deal with the more common syntactic issues,
such as assignments and array literals.

Note, however, that it currently does not deal with multiple assignments, though it could
and should. Youʼll have to deal with those manually, as discussed above.

The conversion may fail because your code uses primitives or FFI calls, or because you
overlooked a multiple assignment (or because itʼs buggy).

The converter should warn about primitives/FFI calls, but it doesnʼt.

If the conversion to NS1 has been successful, youʼre ready to go ahead and convert to
NS2.

What the converter will do is produce a top level NS2 class representing the entire
category. If your category is named “Category to be converted”, the top level class will
be named #CategoryToBeConverted. Nested inside it will be NS2 versions of each
class within the category.

CategoryToBeConverted will have a a factory method named #usingPlatform: with
platform as it argument. This is only a first approximation, and will likely need manual
adjustment.

The converter will detect all references to global names that are not classes defined in
the category, and produce rudimentary imports for them. For example, if you have code
that references a class in another category, say ClassInAnotherCategory, their will be
module variable defined as:

ClassInAnotherCategory = platform ClassInAnotherCategory.

The same holds for any global variables, regardless of whether they are defined by
classes in the category or not. Remember also that by now, all class and pool variable
declarations have been eliminated, so these are treated as globals as well. A module
variable will be created, with an import. If such a variable is defined by your code, youʼll
need to manually change the declaration so that it initializes the module variable in a
suitable way.

If your code uses class instance variables, youʼre on your own. The declarations of
these variables will disappear. You need to manually track them and figure out how to
convert them.

Class instance variables are uncommon, but the converter should probably demand
they be removed, or at least issue a warning.

Inherited class methods will often need to be copied down manually. Newspeak
metaclasses do not inherit from their superclassʼ metaclass.

The converter could do this for you. However, this is likely to lead to bloat. Many of
these inherited methods are constructors for the superclass and not suitable for the
subclass. Others belong in the surrounding module declaration, and yet others are
simply not used. Heuristics might be useful for deciding the issue.

Class initialization methods will continue to work after the conversion (modulo any
reliance on inherited class methods as discussed above). However, one cannot rely on
them being called before the class is used. To deal with this, it is best to manually
eliminate these methods, transferring their actions to the top level instance initializer.

The system could deal with this problem automatically by ensuring that the initializer of
any nested class was called from the top level initializer. This is however, undesirable
for several reasons:
a. It is bad style. In Newspeak, classes should not have initializers; a class has no state

of its own, so there is nothing to initialize.
b. It causes eager creation of nested classes, slowing down module instantiation and

possibly wasting space.
c. It is unreliable. If you have a non-standard initializer name, it wonʼt work

Some of these methods should just be migrated to the surrounding class.

If youʼve gotten your code converted and working using the tools, it still makes sense to
attempt to clean up the converted code to make it idiomatic, as suggested above.

Beyond this, you are on your own. Good luck!

